

UNIVERSE+ Online Seminar

Agnese Bissi "AdS Amplitudes from CFT"

Part 2

the European Union

Established by the European Cor

Funded by the European Union (ERC, UNIVERSE PLUS, 101118787). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Research Council Executive Agency. Neither the European Union nor the granting authority can be

universe+ is a cooperation of

MAX PLANCK INSTITUTE

INSTITUTE FOR ADVANCED STUDY

MAX PLANCK INSTITUTE

ŝ UNIVERSITY OF AMSTERDAM

	Ads Loops Amplitudes From Cft
ы с х с н к к к	
6 8 8 8	Acado Rico
n x n x	
5 8 8 9	(ICTP & UPPSALA UNIVERSITY)
	- ()
21 21 22 12 1	
5 8 8 8 9	A RASEA IN . I B S B S B M B S B S B M B S B S B B S B S
5 2 8 8 6	
к	WORK IN PROGRESS W/G. FARDELLI & M.R. KHANSARI
F F F F	& ALSO NEESPENT COLLAR MATIONS W/ C FAR NELL
E 2 8 ·	B HUSU DIFFERENT COUNT BOLINITIONS W/ G. IFILIDOUS
	A.GEORGOUDIS, A.MANENTI

					•
	$\mathcal{C}^{z}_{\Delta_{i}^{*}e} = \mathcal{C}^{z}_{\Delta_{i}^{*}e} = \mathcal{C}^{z}_{\Delta_{i}^{*}e}$	•			•
	$C_{\Delta, \mathcal{R}} \sim \frac{1}{\Lambda - \Lambda^*}$		• •		•
		•			•
		•			•
	HAS POLES AT THE DIMENSION OF	•			•
· · · · · · ·	Exchanged operators and residue	•		· · · ·	
· · · · · · ·	THE SQUARE OF THE OPE COEFFICIENT.	•	· ·	· · · ·	
	SINGULARITIES -> OPE DATA		· ·	· · · ·	• •
· · · · · · ·	AROUND $\Xi = 1$ ($\ell \geq 2$)	•	· ·	· · ·	• •

USE FUL RELATIONS : TWO n (m) dDisc $\left[\left(\frac{1-\overline{z}}{\overline{z}}\right)^{\lambda}\right] = \left(\frac{1-\overline{z}}{\overline{z}}\right)^{\lambda} 2 \sin^{2}(\pi\lambda)$ $dDisc \left[\log^{k} (1-\bar{z}) \right] = 2\pi^{2} k (k-1) \log^{k-2} (1-\bar{z}) + \dots$ 2 log to

LET US GO BACK TO OUR SETUP . LEADING ORDER N° : GENERALIZED FREE FIELDS $G^{(0)}(u,v) = 1 + u^{\Delta v} + \left(\frac{u}{v}\right)^{\Delta v}$ FIND ane AND A UNDERSTAND HOW TO WITHOUT KNOWING THE CORRELATOR

• CONSIDER $0 \times 0 \sim 1 + \dots$. $G^{(0)}(u, \sigma) \subset a_{0,0} \mathcal{N}^{0} g_{0,0}(u, \sigma) = 1$. USE CROSSING $G(u,v) = \left(\frac{u}{v}\right)^{\Delta \theta} G(v,u)$ $1 = \left(\frac{\mu}{\nu}\right)^{\Delta \Theta} G(\nu, \mu) \rightarrow G(\nu, \mu) = \left(\frac{\nu}{\mu}\right)$. THE ONLY TERM WITH ODISC = O IS $\left(\frac{\upsilon}{u}\right)^{\Delta \Theta} \rightarrow \Delta = 2\Delta \Theta + 2n + 0$ $\mathbf{a}(\mathbf{o}) = \mathbf{a}$

•		· · ·	RDER N ^{-2k}	· · · ·
•	•	· ·	$G_{\xi}^{(\kappa)}(u,v) \geq \sum_{n} \frac{1}{2^{\kappa} \kappa!} u^{A_0+n} \frac{(o)}{a_{n,o}} \left(\chi_{n,o}^{(l)} \right)^{\kappa} \log_{\lambda_0}^{\kappa} g_{n,o}(u,v)$	· · · · ·
•	•		CROSSING	
•	•		$dDisc[log^{k}r] \neq 0$	
•	•	· ·	ONNENTS (
•	•	· · ·	FT N-4 : THIS IS THE ONLY TERM WITH NON VANISHING JDISC	
•	•	· ·	RECONSTRUCT COMPLETELY THE 4 POINT FUNCTION	· · ·
•	•	· ·	[AHARONY, ALDAY, AB, PERLMUTTER] [ALDAY, CARON-HUOT]	· · ·

DIFFICULTIES IN PERFORTING SUM OVER N AND	
INTEGRALS	
IS CONTAIN HYPERGEOMETRIC FUNCTIONS & LOG'S.	
· · · · · · · · · · · · · · · · · · ·	
a sa 🗤 na sana	
LIGHT CONE LIMIT : INTEGRAL AROUND Z -> O ->>	n=0
$\frac{1}{2} \rightarrow 1$	LARGE Spin
NANAGE TO FIND THE CONTRIBUTION TO THE	
ANOMALOUS DIMENSION OF DOUBLE TRACES DUE TO	THE A A A

RESULTS 0=2 Snie (K) FOUND THE STRUCTURE OF WE $\forall n, l = \frac{\forall n, 0}{N^2} + \frac{\forall n, l}{N^4} +$ EXPANSION IN N² $# + # log^{k-2} l + # log^{k-3} l + -- Y_{n,e} =$ K71 04

EXPANSION RECA AS THE (1) (1) 1 (2) Vne = N + Knein $\frac{\delta n_{10}}{N^2}$ + (n, e, N . . . , 76

• •		INE EXPE	10510N 715	
	$n_{e} =$	$\frac{\delta n_{,0}}{\delta n_{,0}} + \delta$	Kniein +	Knein +
		N ² N ²	 3 4	
				$\frac{1}{2}$
				$J = (l + \Delta_{\Theta})(l + \Delta_{\Theta} - l)$
				Conformal spin

EXPANSION REC AS THE (1) 8n10 + K^un, e, N K (2) K n, e, N Vne = NIZ. $K_{0,e,N} = -\frac{12}{N^4} J^{-\frac{1}{N^2}} + \text{subleading logs}$

EXPANSION RE CAS AS THE 6n10 nein NZ. $v_{2,N} = \frac{1}{N^4} \left(8 J^{-\frac{1}{N^2}} \right)$ 256 J 5N2) J - N2 + subleading logs KOLN

INSTERD OF CONSIDERING LOOPS, WE CAN	CONSIDER	
NEW FIELDS IN Ads with LOW TWIST		
$\int \phi \phi \chi \qquad \qquad \chi = \phi^2$		
na na sana na sana ang AdSona na sana na sana Na sana na sana		• •
AT LADGE J. THE ANOTALOUS DIMENSION	NET	
THE SCHAR EXCHANGE IS		
$\sum (\Delta \phi)^2 \Gamma (\Delta x)$		
$\nabla = \nabla \phi \phi \chi = \frac{\Gamma(\Delta \phi - \Delta \chi)^2 \Gamma(\Delta \chi/2)^2}{\Gamma(\Delta \chi/2)^2}$	$J^{\Delta\chi_{\mu}}$, $J^{\lambda\chi_{\mu}}$	
(1, 2, 3) = (1,		

•	•	•	•	•	•		X		2	۲ ۵	• •	E	ľ,	фz	•	•	•	•	•	•	•		•	•	•	•	(1	= ا	2))	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	i I	50				2	5	E	N+:	2		, >) ,	(8	ίι) φ ²)"	1+2		3	6	1)'	1	lo	9	J	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	J	T	N	= 0		•	•	•	•	•	•	•	•	•	•		1+)	•		•	•	•	•	•	•	•	•		•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	J.		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	ŧ	沃	AC	12	Y		RI	ΞP	ρc.	DÚ	Œ	6	50	R	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	•		•	•		•		•	•	•	•	•	•	•	•	RE	ŚĊ	i.T	\$		TA	1	Ð	46	11	16	0	R	de	R	in the second se		•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•		•	•	•		•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

CFT CORRELATORS Ads AMPLITUDES FLAT SPACE A10 (sit) = 20000> = LIMIT $G_N \times + G_N^2 \times + G_N^3 \times \infty$ $G^{(0)}(u,v) + \frac{1}{N^2} G^{(1)}(u,v) + \frac{1}{N^4} G^{(2)}(u,v) + \cdots$ dDisc CUTS & DISCONTINUITIES $G_N \times + G_N^2 \times + G_N^3 \times \infty$ Vnie, anie

HOW TO MAKE THE CONNECTION : MEULN SPACE $G(\mathcal{U}_{1} \mathcal{O}) = \frac{1}{(4\pi i)^{2}} \int ds dt \quad \mathcal{H}(s_{1}t) \quad u^{\frac{t}{2}} v^{\frac{u-2\Delta \sigma}{2}} \Gamma^{2} \left(\frac{2\Delta \sigma - t}{z}\right) \Gamma^{2} \left(\frac{2\Delta \sigma - s}{z}\right) \Gamma^{2$ $\hat{u} = 4A\epsilon$ M(sit) CAN BE INTERPRETED AS [PENEDONE (]

N-Z M(s,t) = constORDER AT $R_{n}^{(i)}(s)$ CAOSSED N-4 (s,t) =M $t - (2\Delta e + 2n)$ 1=0 RE CONSTRUCT IS AT ORDER N-2K WE $R_{n}^{(k)}(s)$ $(t - (200 + 2n))^{k}$ n=0 LARGE l EXPANSION THE FIX x (K) 7,270 OF

FROM THE HELLIN DESCRIPTION, IT IS POSSIBLE TO TAKE THE FLAT SPACE LIMIT AND MATCH IT WITH THE COPRESPONDING FLAT SPACE AMPLITUPES. TO WHICH PART OF THE AMPLITUDE DOES THE log in flu, v) CORRESPOND TO?

WT ON THE FEYNMAN DIAGRAM UNITARITY CUT : PUTTING THE PROPAGATOR ON SHELL SPACE AND WE CONJECTURE WE CHECKED IT IN FLAT IN THE SATLE WAY IN Ads WORKS THAT Π FOR N=4 SYN AB, G.FARDEW, A GEORGOUDIS

· · · · · · · · · ·	SUMMARY & FUTURE DIRECTIONS
. HIGHEST	log u IN CFTS wITH \$4 TYPE INTERACTION
ITERA	TED CUTS IN THE AMPLITUDE PICTURE
. Energen	KE OF HIGHER TRACE OPERATORS
, EXTEND	THE DISCUSSION TO ϕ^3 TYPE INTERACTIONS (IN PROGRESS)

UNDERSTAND IN SUSY TH	THE EMERGENCE HEORIES	OF HIGHER TRACE OPERATORS
 , STUDY	HIGHER LOOPS	OR • EXTERNAL DOUBLE TRACE
 		$\frac{1}{2}$ BPS
 • HIGHER	POINT FUNCTIONS	. L BPS 4
 	· · · · · · · · · · ·	