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Context

This talk presents a joint paper with two Berkeley PhD students,
Smita Rajan and Svala Sverrisdéttir, intended for publication in a
special volume Positive Geometry in the journal Le Matematiche.

Initial motivation: understand the mathematics behind Smita’s
Bachelor thesis (Physics at Brown U), and answer a question in

A. Pokraka, S. Rajan, L. Ren, A. Volovich, W. Zhao:
Five-dimensional spinor helicity for all masses and spins
arXiv:2405.09533, Journal of High Energy Physics.

Another goal: Extend nonlinear algebra in
Y. El Maazouz, A. Pfister and B. Sturmfels:

Invitation to
Spinor-helicity varieties, arXiv:2406.17331. Nonlinear Algebra

Mateusz Michatek
Bernd Sturmfels
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Particles in d-dimensional spacetime

Spacetime is RY or C9, with the Lorentzian inner product

Xy = Xiy1 —X2¥y2 — -+ — XnYn-

The Lorentz group SO(1,d — 1) consists of d x d matrices g
such that det(g) = 1 and (gx) - (gy) = x - y for all x,y € C¢.

A configuration of n particles is given by momentum vectors

pPi = (pl'lapi27"'7pid) S (Cd.
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Particles in d-dimensional spacetime

Spacetime is RY or C9, with the Lorentzian inner product

Xy = Xiy1 —X2¥y2 — -+ — XnYn-

The Lorentz group SO(1,d — 1) consists of d x d matrices g
such that det(g) = 1 and (gx) - (gy) = x - y for all x,y € C¢.

A configuration of n particles is given by momentum vectors

pPi = (pl'lapi27"'7pid) S (Cd.

Assume that each particle is massless, i.e. pj - p; = 0:

ph — Py —ph— - —py =0 for i=12...,n

Also assume momentum conservation Z;’:l p;i = 0:

p11+P2]+ +Pn_/ = 0 for J:1,277d
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|deals, varieties and algorithms

Let /g, C C[p] be the ideal generated by the n quadrics for
massless and the d linear forms for momentum conservation.

Here C[p] is the polynomial ring in nd variables p;;.

Example (n = d = 3)
Three particles on the icecream cone. Let's try it in Macaulay?2:
il : R=QQ[pll,pl2,pl3, p21,p22,p23, p31,p32,p33];
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|deals, varieties and algorithms

Let /g, C C[p] be the ideal generated by the n quadrics for
massless and the d linear forms for momentum conservation.

Here C[p] is the polynomial ring in nd variables p;;.

Example (n = d = 3)

Three particles on the icecream cone. Let's try it in Macaulay?2:

il : R=QQ[pll,pl2,pl3, p21,p22,p23, p31,p32,p33];

i2 : | = ideal( pl1+p21+p31, p12+p22+p32, pl3+p23+p33,
pl12—p122—p132, p212—p222—p232, p312—p322—p332);

i3 : codim I, degree |
03 = (6, 8)
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|deals, varieties and algorithms
Let /g, C C[p] be the ideal generated by the n quadrics for
massless and the d linear forms for momentum conservation.

Here C[p] is the polynomial ring in nd variables p;;.

Example (n = d = 3)

Three particles on the icecream cone. Let's try it in Macaulay?2:

il : R=QQ[pll,pl2,pl3, p21,p22,p23, p31,p32,p33];

i2 : | = ideal( pl1+p21+p31, p12+p22+p32, pl3+p23+p33,
pl12—p122—p132, p212—p222—p232, p312—p322—p332);

i3 : codim I, degree |

03 = (6, 8)

i4 : isPrime I, isPrimary |

04 = (false, true)

i5 : radical 133

o5 = ideal( ..., p23xp31 — p21xp33, p22xp31 — p21xp32, ...)
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Prime time

Theorem
la.n is prime and a complete intersection, provided max(n,d) > 4.

Proof: technical commutative algebra
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Prime time

Theorem
la.n is prime and a complete intersection, provided max(n,d) > 4.

Proof: technical commutative algebra

How about using a parametric representation of the variety V/(/,)?

One idea is to express the variables in the first row and column in
terms of the entries of the (n — 1) x (d — 1) matrix p’ = (pjj)ij>2.
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Prime time

Theorem
la.n is prime and a complete intersection, provided max(n,d) > 4.

Proof: technical commutative algebra

How about using a parametric representation of the variety V/(/,)?

One idea is to express the variables in the first row and column in
terms of the entries of the (n — 1) x (d — 1) matrix p’ = (pjj)ij>2.

Remark (Bad News)

The elimination ideal 4, N C[p'] is principal. Its generator is a
large polynomial of degree 2"~1. This hypersurface is a notable
obstruction to any easy parametrization. This does not exist.

Example: for n=4,d =5, the polynomial has 4671 terms of degree 8.
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Mandelstam invariants

Physical properties of our n particles are invariant under the group
G = O(1,d —1). The ring of G-invariants in C|[p] is generated by
the Mandelstam invariants s; = p; - pj. Consider the invariant ring

(Cp)/1a,n)® = CIS]/Ma,n-
The Mandelstam variety is the GIT quotient

V(Mqgn) = Spec((C[p]/ld,n)®) = V(lan)//G.
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Mandelstam invariants
Physical properties of our n particles are invariant under the group
G = O(1,d —1). The ring of G-invariants in C|[p] is generated by
the Mandelstam invariants s; = p; - pj. Consider the invariant ring

(ClPl/14,n)¢ = CIS]/Ma,n-
The Mandelstam variety is the GIT quotient
V(Mqgn) = Spec((C[p]/ld,n)®) = V(lan)//G.

Theorem
Let n> 2 and d > 4. The prime ideal My ,, equals

(511,922, -y Snn) + (iysij fori=1,....,n)
+ < (d+1) x (d+1) minors of the symmetric matrix (s;;) >

The dimension of the Mandelstam variety is
dim(V(Mg ) = nd —n—d — (3) = dim(V(lg,,) — dim(G).
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Clifford algebras and spinors

We now dive into the formalism used in physics:

A. Pokraka, S. Rajan, L. Ren, A. Volovich, W. Zhao: Five-dimensional
spinor helicity for all masses and spins, arXiv:2405.09533, JHEP.

Kinematic data for n particles are expressed in terms of spinors:
H. Elvang and Y. Huang: Scattering Amplitudes in
Gauge Theory and Gravity, Cambridge University Press, 2015.

This encoding rests on the Clifford algebra Cl(1,d — 1):

M. Rausch de Traubenberg: Clifford algebras in physics,
Adv. Appl. Clifford Algebr. 19 (2009) 869-908.

Mathematicians appreciate Bourbaki:

C. Chevalley: The Algebraic Theory of Spinors and Clifford Algebras:
Collected Works of Claude Chevalley, Volume 2, Springer Verlag, 1996.

m] = = =

7/22



Dirac matrices

For us, spinors are vectors of length 2% where k = [d/2]. We
recursively define 2% x 2% matrices '1,5,..., 4. For d =2,

0 1 0 1
F1 = |:_1 0:| and F2 = |:1 O].

For larger d = 2k, take tensor products with Pauli matrices:

M= M1y © [01 ﬂ for 1<7<2k—2,

Mk—1 = Idp—1 ® |:(1) (1):| s Mok = Idok—1 ® |:? _OI:|

For d =2k +1 odd, set oy = —ik"1 . Tqlg - -Top ;.
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Dirac matrices

For us, spinors are vectors of length 2% where k = [d/2]. We
recursively define 2% x 2% matrices '1,5,..., 4. For d =2,

0 1 0 1
F1 = |:_1 0:| and F2 = |:1 O].

For larger d = 2k, take tensor products with Pauli matrices:

M= M1y © [01 ﬂ for 1<7<2k—2,

Mk—1 = Idp—1 ® |:(1) (1):| s Mok = Idok—1 ® |:? _OI:|

For d =2k +1 odd, set oy = —ik"1 . Tqlg - -Top ;.

Proposition
The Dirac matrices satisfy the Clifford algebra relations:

? = —2Tdy, 7 =2Tdy forj > 2

"= ci(1,d—1)
and I',-I'j + I'jl‘,- = 0Ogk for i 75_].
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A matrix for one particle
The momentum space Dirac matrix is the linear combination

P = —pil1+pal2 + p3l3+ -+ pala.

Example (d = 4,5,6)

0 0 pL—p2  p3—ips
0 0 ps+ips  p1+p2
—pL—p2  p3—ipa 0 0 ’
p3+ips  —p1+p2 0 0
ps 0 p1—p2 p3—ipa
p — 0 ps p3s+ips  p1+p2
—p1—p2  P3—ipa —Pps 0
p3+ips  —p1+p2 0 —ps
0 0 0 0 —p1+ P2 0 —p3+ips  ps —ipg
0 0 0 0 0 —p1+pP2  pstipe  P3tipa
0 0 0 0 —p3 —ips  Ps —ips —p1 — P2
P = 0 0 0 0 ps +ips  P3 — ipa 0 —p1 — P2
- p1+ P2 0 —p3 +ipa  ps — ips 0 0 0 0
0 p1+pP2  Pst+ips  p3tips 0 0 0 0
—p3 —ips  Ps —ips  PL— P2 0 0 0 0 0
ps +ipe  P3 — ipa 0 p1— P2 0 0 0 0
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Spin representation

Corollary
The relations of the Clifford algebra C1(1,d — 1) imply

P2 = (=p}+p3+---+p3)ldy,
k—1
det(P) = (pf—pi——p5)? -

For massless particles, the momentum space Dirac matrix P is
nilpotent and its rank equals half of its size, i.e. rank(P) = 2k,
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Spin representation

Corollary
The relations of the Clifford algebra C1(1,d — 1) imply

P2 = (=p}+p3+---+p3)ldy,
k—1
det(P) = (pf—pi——p5)? -

For massless particles, the momentum space Dirac matrix P is
nilpotent and its rank equals half of its size, i.e. rank(P) = 2k,

The Dirac representation of CI(1,d—1) gives rise to the spin
representation of the Lie algebra so(1,d—1). The commutators

ik = [ Tkl
satisfy same relatlons as the generators of so(1,d—1).

The spin representation of SO(1, d—1) is the action of
the matrix exponentials exp(Xjx) on spinor space c?.
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Charge conjugation matrix
An equivariant linear map from the spin representation of

50(1,d — 1) to its dual is represented by a 2% x 2K matrix C:

CP = —-PTC if d =2k is even,
CP = (~1)kPTC ifd=2k+1is odd.

0 0 0 0 0 1
0 —i 0 O 0 - 0 O g g g g *01 g

C — i 0 0 O i 0 0 O o 0o 0 0 0 0
0 O 0 —i|’”10 O O' i’ (1’ *01 g 8 g g

0 0 /+ O 0 0 —i 0 0o 0o o0 1 0 0

0 0 -1 0 0 O

cocoocoorooo

-

cocoococoloco
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Charge conjugation matrix
An equivariant linear map from the spin representation of
50(1,d — 1) to its dual is represented by a 2% x 2K matrix C:
CP = —-PTC if d =2k is even,
CP = (-1)*PTC ifd=2k+1isodd.

0 0 0 0 0 1 0 O
0 —i 0 O 0 - 0 O 0 0o o0 o0 -1 0 0 0

. . 0o 0 o0 0 0 0 0 -1
C:’OOO i 0 0 O 0o 0 0 0 0 0 1 0
0 0 0 —/f710 0 0 712 T ¢ ¢ 5 o 0 o

0 0 /+ O 0 0 —i 0 0o o0 1 0 0 0 O

0 0 -1 0 0 0 0 O

Proposition (Symmetries)
1. C is symmetric for k = 0,3 mod 4, otherwise skew symmetric.

2. C is block diagonal for k = 0 mod 2, else anti-block diagonal.

3. the 2k=1 x 2k=1 plocks of C are skew symmetric when
k =2,3 mod 4; otherwise the blocks are symmetric.
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Bra and ket
Our goal: model interactions among n massless particles
pi = (pi1s-- -, Pid)- The tuple (p1,...,ps) liesin V(lg,) C C™.
The momentum space Dirac matrix for the ith particle is

Pi = —piul1 + pial2 + pisl3 + -+ + piala-

This matrix has size 2X and rank 251, Clifford relations imply

P,'Pj + PJ'P,' = 2p,'-p_,'Id2k = 2SUId2k.
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Bra and ket
Our goal: model interactions among n massless particles
pi = (pi1s-- -, Pid)- The tuple (p1,...,ps) liesin V(lg,) C C™.
The momentum space Dirac matrix for the ith particle is

Pi = —pinl1 + pial2 + pisl3 + -+ + piala.
This matrix has size 2X and rank 251, Clifford relations imply
PiP; + P;P; = 2p;-pjldy = 2sjIdy«.
We parameterize the column space of P; using a vector
zi = (21,22, -5 Zigk—=2,0,0, ..., 0, Zgk—2y1, -, Zj k-1 )T
Use Dirac’s ket-notation for vectors in this column space:
|i) = Piz.

Use the bra-notation (i| for the row vector |i)". The spinors | i)

and (i| depend on d 4 2%~1 parameters. They represent particle ;.
12/22



Spinor brackets
The spinor brackets of order two and three are
(i) = (il Clj) and (k) = (i[CP;|k).
Here i,j, k € {1,2,...,n}. The {-th order spinor brackets are
(iip +-+ Ip) (1| CPiy -+ Piy_, | ie).
Spinor brackets are Lorentz-invariant elements in the ring
Rd,n - (C[pa Z]//d,m

which is generated by nd parameters p; and n2%=1 parameters zj.
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Spinor brackets
The spinor brackets of order two and three are
(i) = (il Clj) and (k) = (i[CP;|k).
Here i,j, k € {1,2,...,n}. The {-th order spinor brackets are
(iip +--ig) = (i |CPy---Pj,_, |ig).
Spinor brackets are Lorentz-invariant elements in the ring
Rd,n - (C[pa z]/ld,rh

which is generated by nd parameters p; and n2%=1 parameters zj.
Example. For d = 3 we have

.. pi3 piitpi2|| 0 1 pi3 —Pitpi||zZ1
- [zy 0 j j1tP2| | Z)
0 [zl ] |:_Pi1+Pi2 —Pi3 } [—1 O] [PJH‘sz —Pj3 } [0]

= —PilPj3Zi1Zj1 — Pi2Pj3Zi1Zj1 + Pi3Pj1Zi1Za + Pispi2ZiiZi,

(ijky = Pi1Pj1PKk1Zi1Zk1 + PilPj1Pk2Zi1Zk1 — PilPj2Pk1Zi1Zk1 — Pi1Pj2Pk2Zi1Zk1
—Pi1Pj3Pk3Zi1Zk1 + Pi2Pj1Pk1Zi1Zk1 + Pi2Pj1Pk2Zi1Zk1 — Pi2Pj2Pk1Zi1Zk1
—Pi2Pj2Pk2Zi1Zk1 — Pi2Pj3Pk3Zi1Zk1 + Pi3Pj1Pk3Zi1Zk1 + Pi3Pj2Pk3Zi1Zk1

—Pi3Pj3Pk1Zi1Zk1 — Pi3Pj3Pk2Zi1Zk1-
13/22



Matrices of spinor brackets
Multiply matrices of formats nx 2k, 2%x2k and 2k xn to define

S = ({i))1erjen = (11)slm) - Co (1), m)).

Tj = ((ik))1cipen = (1)) - CoP(11),. . ).
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Matrices of spinor brackets
Multiply matrices of formats nx 2k, 2kx2k and 2k x n to define

S = ({i))1erjen = (11)slm) - Co (1), m)).
Tj = ((ik))1cipen = (1)) - CoP(11),. . ).

Theorem
The n x n matrix S has rank < 2% with zeros on the diagonal. If
k = 0,3 mod 4 then S is symmetric; otherwise skew symmetric:

(iiy =0 and (ij) = £(ji) for 1 <i,j<n.

The matrix T; has rank < 2k=1 with zeros row and column j. If
d=1,2,3,4 mod 8 then T; is symmetric, else skew symmetric:

(jiky = (ijj)=0and (ijk)=+(kji) for 1<ij k<n.

The sum of the matrices T; is zero: T1+ To+---+ T, = 0.
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Example:

For d =3,k =1,n =4, there are six order two spinor brackets:

0 (12) (13y  (14)
5 — |:<12> 0 (23) (24)]
T —=(13) —(23) 0 (34)| -
—(14) —(24) —(34) ©

The 24 spinor brackets of order three are the entries of

0 0 0 0 7 [(121) 0 (123) (124)]
o |0 (212) (213) (214) L_ |0 0o o 0
L= 1o (213) (313) (314)|° "2 7 |(123) 0 (323) (324)|"

0 (214) (314) (414)) [(124) 0 (324) (424))

[(131)  (132) 0 (134)] [(141) (142) (143) 0]
7. [(132) (232) 0 (234) 7, |(142) (242) (243) 0
371 o0 0 0 0 |[> %7 [(143) (243) (343) 0|

| (134) (234) 0 (434)) L0 0 0 0
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Example:

The 30 brackets define the kinematic variety in P% x P23
This is irreducible of dimension 4 and its multidegree is

55°t1 + 28s*t%0 + 2453t 4 10s%t?? + 2st3 € H*(P® x PB, 7).

The ideal is generated by 10 linear formsin Ty + To + T3+ T4
plus 54 = 1+ 24 4+ 29 quadrics.
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Example:

The 30 brackets define the kinematic variety in P% x P23
This is irreducible of dimension 4 and its multidegree is

55°t1 + 28s*t%0 + 2453t 4 10s%t?? + 2st3 € H*(P® x PB, 7).

The ideal is generated by 10 linear formsin Ty + To + T3+ T4
plus 54 = 1+ 24 4+ 29 quadrics. The Plicker quadric

(12)(34) — (13)(24) + (14)(23) = Pfaffian(S),
ensures that S has rank two. The 24 binomial quadrics
(ij k)1 jm) — (ijm)l]j k).
are 2 x 2 minors of the slices T;. Finally, 29 bilinear relations like
(12)(324) — (34)(142) and (12)(243) — (13)(242) + (23)(142)

ensure that the 4 x 4 x 5 tensor ST has rank two. They are in the
radical of the 3 x 3 minors of the 4 x 20 matrix (S, T3, Tp, T3, Ta).
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Varieties in matrix space

The (75) order two spinor brackets (ij) form an nxn matrix S
which is either symmetric or skew symmetric. The set of all
such matrices defines the kinematic variety IC‘(J,227 in P()-1,

Theorem
For d = 3, the ideal of IC§2,), is given by 4 x 4-Pfaffians of a skew
n X n matrix, so it is the Grassmannian Gr(2,n). For d = 4,5,

we get 6 x 6-Pfaffians, so ICEfz, is the secant variety of Gr(2, n).
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Varieties in matrix space
The (75) order two spinor brackets (ij) form an nxn matrix S
which is either symmetric or skew symmetric. The set of all
such matrices defines the kinematic variety ICffL in P()-1,
Theorem

For d = 3, the ideal of ICg2,), is given by 4 x 4-Pfaffians of a skew
n X n matrix, so it is the Grassmannian Gr(2,n). For d = 4,5,

we get 6 x 6-Pfaffians, so ICEfz, is the secant variety of Gr(2, n).

Conjecture
Ford =6,7,8,9, the kinematic variety IC‘(fZ, consists of all
symmetric nx n matrices with zero diagonal and rank < 219/2].

For d even, the spin representation splits into two irreducibles.
Use separate brackets (ij) and [ij] for each block.

For d = 4, we recover the flag varieties F1(2, n — 2; C") in
Y. El Maazouz, A. Pfister and BSt: Spinor-helicity varieties, 2024.
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Varieties in tensor space
Write ICEfZ, for the kinematic variety of n x n x (n+1) tensors ST.

The n x nslices S, T1,..., T, are symmetric or skew symmetric,
depending on residue classes of k = [d/2] mod 4 and d mod 8.

The ideal of k) is Z*-graded.

The variety lives in p(2)-1 x PK=1, where
> K=n- ('2’) when slices T; are symmetric (d =1,2,3,4 mod 8),

> K=n- ("51) when slices T; are skew symmetric.
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Varieties in tensor space
Write ICEI“?, for the kinematic variety of n x n x (n+1) tensors ST.
The n x nslices S, T1,..., T, are symmetric or skew symmetric,
depending on residue classes of k = [d/2] mod 4 and d mod 8.

The ideal of k) is Z*-graded.

The variety lives in p(2)-1 x PK=1, where
> K=n- ('2’) when slices T; are symmetric (d =1,2,3,4 mod 8),

> K=n- (";1) when slices T; are skew symmetric.

Conjecture (

The variety IC§3,), has dimension 3n — 8. Its points are tensors ST
of rank 2, where S is skew symmetric and the T; are symmetric
of rank <1, summing to 0, with zeros in j-th row/column.

Its ideal is generated by linear forms and quadrics:

the entries of Ty + --- + T,, the 4 x4 pfaffians of S,

the 2x 2 minors of the T;, and bilinear Pfaffians in the

radical of the 3x3 minors of the flattening (S, T1,..., T,).
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Numerical algebraic geometry
Goal: Study the kinematic varieties ICE?Z, for arbitrary d and n.
First question: What is the dimension?
Proposition
The dimensions of small kinematic varieties IC((fZ, are

din 4 5 6 7 8 9 10 11 12
4 8 13 18 23 28 33 38 43 48
5 7 13 19 25 31 37 43 49 55
6 9 20 30 40 49 58 67 76 85
7 9 20 30 40 50 60 70 80 90
8 10 28 51 67 82 97 112 127 142
9 15 33 49 65 81 97 113 129 145

We computed these numbers with numerical software in julia:

P. Breiding and S. Timme: HomotopyContinuation.jl: A package for
homotopy continuation in Julia, Mathematical Software, ICMS 2018,
Lecture Notes in Computer Science, 10931, 458-465, 2018.
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Five-dimensional spacetime

Points in IC?,), are n x n x (n+1) tensors ST. Slices S and T; are
skew symmetric of rank 4 resp. 2. The T; satisfy linear constraints.

Proposition
For each index j € {1,..., n}, the skew symmetric n x n matrix

-
(]1),...,zj,...,\n)) -C-Pj- (]1),...,zj,...,|n>)
contains both brackets (ij) and (ijk). It has rank <2 on IC!(;3,), so
the 4 x4 Pfaffians give bilinear ideal generators. Furthermore, the
n x (n?+n) flattening (S, T1,. .., T,) has rank < 4 on ICSn.
It contributes mixed 6 x 6 Pfaffians to the ideal generators.

The n x (n+ 1) slices of ST given by fixing indices i or k seem to have
rank < 3. Interestingly, the tensor rank of ST is at least 5 on ICS,)7 We
show this by evaluating the Strassen invariant on 3x3x3 subtensors.
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Example:

The variety /Césg C P2 x P? has dimension 13. lts ideal is

generated by 10 linear forms, 25 quadrics, 15 cubics and
5 quartics. Each T; is a skew symmetric with a zero row, so it
contributes one Pfaffian (ijk){¢jm) — (ij¢)(kjm) + (ijm){kjl).

The other 20 quadrics are bilinear, e.g. five 4 x4 Pfaffians of

0 (12) (13) (14) (15)
—(12) 0 (213) (214)  (215)
—(13)  —(213) 0 (314)  (315)
—(14)  —(214) —(314) 0 (415)
—(15)  —(215) —(315) —(415) 0

The 15 cubics ensure that (S, Ty, Ty, T3, T4, Ts) has rank < 4.
One of them is (213)(123)(435) — (213)(325)(134) + (213)(324)(135)+
(314)(123)(235) — (314)(325)(132) — (315)(123)(234) + (315)(324)(132).

The 5 quartics are 4 x 4 minors of mixed slices like

0 (12) (13) (14) (15) —(12) 0 (23) (24) (25)

) 0 0 0 0 0 (213) (214) (215)

0 0 (123) (124) (125) 0 0 0 0 0 t

0 (132) 0 (134)  (138) | s | —@32) o 0 (234) (235) | » €LC...
0 (142) (143) 0 (145) —(142) 0 (243) 0 (245)

0 (152) (153) (154) 0O —(152) 0 (283) (254) O
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Conclusion

| learned a lot from Smita Rajan and Svala Sverrisdéttir. We hope
you'll enjoy the papers on Positive Geometry in Le Matematiche.

Many connections remain to be explored:

GRADUATE STUDIES
IN MATHEMATICS

Invitation to
Nonlinear Algebra

Mateusz Michatek
Bernd Sturmfels

¥ universe +
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