Kinematic Varieties for Massless Particles

Bernd Sturmfels MPI Leipzig

Joint work with Smita Rajan and Svala Sverrisdóttir

UNIVERSE+ Online Seminar, October 23, 2024

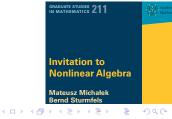
Context

This talk presents a joint paper with two Berkeley PhD students, Smita Rajan and Svala Sverrisdóttir, intended for publication in a special volume Positive Geometry in the journal *Le Matematiche*.

Initial motivation: understand the mathematics behind Smita's Bachelor thesis (Physics at Brown U), and answer a question in

A. Pokraka, S. Rajan, L. Ren, A. Volovich, W. Zhao: *Five-dimensional spinor helicity for all masses and spins* arXiv:2405.09533, Journal of High Energy Physics.

Another goal: Extend nonlinear algebra in Y. El Maazouz, A. Pfister and B. Sturmfels: *Spinor-helicity varieties*, arXiv:2406.17331.



Particles in *d*-dimensional spacetime

Spacetime is \mathbb{R}^d or \mathbb{C}^d , with the Lorentzian inner product

$$x \cdot y = x_1 y_1 - x_2 y_2 - \cdots - x_n y_n$$

The Lorentz group SO(1, d-1) consists of $d \times d$ matrices g such that det(g) = 1 and $(gx) \cdot (gy) = x \cdot y$ for all $x, y \in \mathbb{C}^d$.

A configuration of *n* particles is given by momentum vectors

$$p_i = (p_{i1}, p_{i2}, \ldots, p_{id}) \in \mathbb{C}^d.$$

Particles in *d*-dimensional spacetime

Spacetime is \mathbb{R}^d or \mathbb{C}^d , with the Lorentzian inner product

$$x \cdot y = x_1y_1 - x_2y_2 - \cdots - x_ny_n$$

The Lorentz group SO(1, d-1) consists of $d \times d$ matrices g such that det(g) = 1 and $(gx) \cdot (gy) = x \cdot y$ for all $x, y \in \mathbb{C}^d$.

A configuration of *n* particles is given by momentum vectors

$$p_i = (p_{i1}, p_{i2}, \ldots, p_{id}) \in \mathbb{C}^d.$$

Assume that each particle is *massless*, i.e. $p_i \cdot p_i = 0$:

$$p_{i1}^2 - p_{i2}^2 - p_{i3}^2 - \cdots - p_{id}^2 = 0$$
 for $i = 1, 2, \dots, n$.

Also assume *momentum conservation* $\sum_{i=1}^{n} p_i = 0$:

$$p_{1j} + p_{2j} + \cdots + p_{nj} = 0$$
 for $j = 1, 2, \dots, d$.

3/22

Ideals, varieties and algorithms

Let $I_{d,n} \subset \mathbb{C}[p]$ be the ideal generated by the *n* quadrics for massless and the *d* linear forms for momentum conservation. Here $\mathbb{C}[p]$ is the polynomial ring in *nd* variables p_{ij} .

Example (n = d = 3)

Three particles on the icecream cone. Let's try it in Macaulay2:

i1 : R = QQ[p11,p12,p13,p21,p22,p23,p31,p32,p33];

Ideals, varieties and algorithms

Let $I_{d,n} \subset \mathbb{C}[p]$ be the ideal generated by the *n* quadrics for massless and the *d* linear forms for momentum conservation. Here $\mathbb{C}[p]$ is the polynomial ring in *nd* variables p_{ij} .

Example (n = d = 3)

Three particles on the icecream cone. Let's try it in Macaulay2:

i1 : R = QQ[p11,p12,p13,p21,p22,p23,p31,p32,p33];

i2 : I = ideal(
$$p11+p21+p31$$
, $p12+p22+p32$, $p13+p23+p33$,
 $p11^2-p12^2-p13^2$, $p21^2-p22^2-p23^2$, $p31^2-p32^2-p33^2$);

i3 : codim I, degree I o3 = (6, 8)

Ideals, varieties and algorithms

Let $I_{d,n} \subset \mathbb{C}[p]$ be the ideal generated by the *n* quadrics for massless and the *d* linear forms for momentum conservation. Here $\mathbb{C}[p]$ is the polynomial ring in *nd* variables p_{ij} .

Example (n = d = 3)

Three particles on the icecream cone. Let's try it in Macaulay2:

i1 : R = QQ[p11,p12,p13,p21,p22,p23,p31,p32,p33];

i2 : I = ideal(
$$p11+p21+p31$$
, $p12+p22+p32$, $p13+p23+p33$,
 $p11^2-p12^2-p13^2$, $p21^2-p22^2-p23^2$, $p31^2-p32^2-p33^2$);

i3 : codim I, degree I o3 = (6, 8) i4 : isPrime I, isPrimary I o4 = (false, true) i5 : radical I33 o5 = ideal(..., p23*p31 - p21*p33, p22*p31 - p21*p32,...)

Prime time

Theorem

 $I_{d,n}$ is prime and a complete intersection, provided $\max(n, d) \ge 4$.

Proof: technical commutative algebra

Prime time

Theorem

 $I_{d,n}$ is prime and a complete intersection, provided $\max(n, d) \ge 4$. Proof: technical commutative algebra

How about using a parametric representation of the variety $V(I_n)$?

One idea is to express the variables in the first row and column in terms of the entries of the $(n-1) \times (d-1)$ matrix $p' = (p_{ij})_{i,j \ge 2}$.

Prime time

Theorem

 $I_{d,n}$ is prime and a complete intersection, provided $\max(n, d) \ge 4$. Proof: technical commutative algebra

How about using a parametric representation of the variety $V(I_n)$?

One idea is to express the variables in the first row and column in terms of the entries of the $(n-1) \times (d-1)$ matrix $p' = (p_{ij})_{i,j \ge 2}$.

Remark (Bad News)

The elimination ideal $I_{d,n} \cap \mathbb{C}[p']$ is principal. Its generator is a large polynomial of degree 2^{n-1} . This hypersurface is a notable obstruction to any easy parametrization. This does not exist.

Example: for n = 4, d = 5, the polynomial has 4671 terms of degree 8.

Use Hodges' Momentum Twistors?

Mandelstam invariants

Physical properties of our *n* particles are invariant under the group G = O(1, d - 1). The ring of *G*-invariants in $\mathbb{C}[p]$ is generated by the *Mandelstam invariants* $s_{ij} = p_i \cdot p_j$. Consider the invariant ring

$$(\mathbb{C}[p]/I_{d,n})^{\mathsf{G}} = \mathbb{C}[S]/M_{d,n}.$$

The Mandelstam variety is the GIT quotient

$$V(M_{d,n}) = \operatorname{Spec}((\mathbb{C}[p]/I_{d,n})^G) = V(I_{d,n})//G.$$

Mandelstam invariants

Physical properties of our *n* particles are invariant under the group G = O(1, d - 1). The ring of *G*-invariants in $\mathbb{C}[p]$ is generated by the *Mandelstam invariants* $s_{ij} = p_i \cdot p_j$. Consider the invariant ring $(\mathbb{C}[p]/I_{d,n})^G = \mathbb{C}[S]/M_{d,n}$.

The Mandelstam variety is the GIT quotient

$$V(M_{d,n}) = \operatorname{Spec}((\mathbb{C}[p]/I_{d,n})^G) = V(I_{d,n})//G.$$

Theorem

Let $n \ge 2$ and $d \ge 4$. The prime ideal $M_{d,n}$ equals

$$\langle s_{11}, s_{22}, \dots, s_{nn} \rangle + \langle \sum_{j=1}^{n} s_{ij} \text{ for } i = 1, \dots, n \rangle + \langle (d+1) \times (d+1) \text{ minors of the symmetric matrix } (s_{ij}) \rangle$$

The dimension of the Mandelstam variety is

$$\dim(V(M_{d,n})) = nd - n - d - \binom{d}{2} = \dim(V(I_{d,n})) - \dim(G).$$

Clifford algebras and spinors

We now dive into the formalism used in physics:

A. Pokraka, S. Rajan, L. Ren, A. Volovich, W. Zhao: *Five-dimensional spinor helicity for all masses and spins*, arXiv:2405.09533, JHEP.

Kinematic data for *n* particles are expressed in terms of spinors: H. Elvang and Y. Huang: *Scattering Amplitudes in Gauge Theory and Gravity*, Cambridge University Press, 2015.

This encoding rests on the Clifford algebra Cl(1, d - 1): M. Rausch de Traubenberg: *Clifford algebras in physics*, Adv. Appl. Clifford Algebr. **19** (2009) 869–908.

Mathematicians appreciate Bourbaki:

C. Chevalley: *The Algebraic Theory of Spinors and Clifford Algebras*: Collected Works of Claude Chevalley, Volume 2, Springer Verlag, 1996.

・ロト・西ト・ヨト・ヨー うらう

Dirac matrices

For us, spinors are vectors of length 2^k where $k = \lfloor d/2 \rfloor$. We recursively define $2^k \times 2^k$ matrices $\Gamma_1, \Gamma_2, \ldots, \Gamma_d$. For d = 2,

$$\Gamma_1 \ = \ \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \quad \mathrm{and} \quad \Gamma_2 \ = \ \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

For larger d = 2k, take tensor products with Pauli matrices:

$$\begin{split} \Gamma_i &= \Gamma_{k-1,i} \otimes \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \text{ for } 1 \leq i \leq 2k-2, \\ \Gamma_{2k-1} &= \operatorname{Id}_{2^{k-1}} \otimes \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \Gamma_{2k} &= \operatorname{Id}_{2^{k-1}} \otimes \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}. \\ \text{For } d &= 2k+1 \text{ odd, set } \Gamma_{2k+1} &= -i^{k-1} \cdot \Gamma_1 \Gamma_2 \cdots \Gamma_{2k-1}. \end{split}$$

Dirac matrices

For us, spinors are vectors of length 2^k where $k = \lfloor d/2 \rfloor$. We recursively define $2^k \times 2^k$ matrices $\Gamma_1, \Gamma_2, \ldots, \Gamma_d$. For d = 2,

$$\Gamma_1 \ = \ \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \quad \mathrm{and} \quad \Gamma_2 \ = \ \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

For larger d = 2k, take tensor products with Pauli matrices:

$$\begin{split} \Gamma_i &= \ \Gamma_{k-1,i} \otimes \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \text{ for } 1 \leq i \leq 2k-2, \\ \Gamma_{2k-1} &= \ \mathrm{Id}_{2^{k-1}} \otimes \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \ \Gamma_{2k} &= \ \mathrm{Id}_{2^{k-1}} \otimes \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}. \\ \text{For } d &= 2k+1 \text{ odd, set } \ \Gamma_{2k+1} &= -i^{k-1} \cdot \Gamma_1 \Gamma_2 \cdots \Gamma_{2k-1}. \end{split}$$

Proposition

The Dirac matrices satisfy the Clifford algebra relations:

$$\begin{split} \Gamma_1^2 &= -2 \operatorname{Id}_{2^k}, \ \Gamma_j^2 &= 2 \operatorname{Id}_{2^k} \ \text{for } j \geq 2 \\ \text{and} \ \Gamma_i \Gamma_j + \Gamma_j \Gamma_i &= 0_{2^k} \ \text{for } i \neq j. \end{split}$$

A matrix for one particle

The momentum space Dirac matrix is the linear combination

$$P = -p_1\Gamma_1 + p_2\Gamma_2 + p_3\Gamma_3 + \cdots + p_d\Gamma_d.$$

Example (d = 4, 5, 6)

$$P = \begin{bmatrix} 0 & 0 & p_1 - p_2 & p_3 - ip_4 \\ 0 & 0 & p_3 + ip_4 & p_1 + p_2 \\ -p_1 - p_2 & p_3 - ip_4 & 0 & 0 \\ p_3 + ip_4 & -p_1 + p_2 & 0 & 0 \end{bmatrix},$$

$$P = \begin{bmatrix} p_5 & 0 & p_1 - p_2 & p_3 - ip_4 \\ 0 & p_5 & p_3 + ip_4 & p_1 + p_2 \\ -p_1 - p_2 & p_3 - ip_4 & -p_5 & 0 \\ p_3 + ip_4 & -p_1 + p_2 & 0 & -p_5 \end{bmatrix}.$$

$$P = \begin{bmatrix} 0 & 0 & 0 & 0 & -p_1 + p_2 & 0 & -p_5 \\ 0 & 0 & 0 & 0 & 0 & -p_1 + p_2 & p_5 + ip_6 & p_3 + ip_4 \\ 0 & 0 & 0 & 0 & -p_3 - ip_4 & p_5 - ip_6 & -p_1 - p_2 & 0 \\ 0 & 0 & 0 & 0 & -p_3 - ip_4 & p_5 - ip_6 & -p_1 - p_2 & 0 \\ p_1 + p_2 & 0 & -p_3 + ip_4 & p_5 - ip_6 & 0 & 0 & 0 \\ -p_3 - ip_4 & p_5 - ip_6 & p_1 - p_2 & 0 & 0 & 0 & 0 \\ p_5 + ip_6 & p_3 - ip_4 & 0 & 0 & 0 & 0 \\ p_5 + ip_6 & p_3 - ip_4 & 0 & p_1 - p_2 & 0 & 0 & 0 \end{bmatrix}.$$

9/22

Spin representation

Corollary

The relations of the Clifford algebra Cl(1, d - 1) imply

$$P^2 = (-p_1^2 + p_2^2 + \dots + p_d^2) \operatorname{Id}_{2^k},$$

$$\det(P) = (p_1^2 - p_2^2 - \dots - p_d^2)^{2^{k-1}}.$$

For massless particles, the momentum space Dirac matrix P is nilpotent and its rank equals half of its size, i.e. $rank(P) = 2^{k-1}$.

Spin representation

Corollary

The relations of the Clifford algebra Cl(1, d - 1) imply

$$P^2 = (-p_1^2 + p_2^2 + \dots + p_d^2) \operatorname{Id}_{2^k},$$

$$\det(P) = (p_1^2 - p_2^2 - \dots - p_d^2)^{2^{k-1}}.$$

For massless particles, the momentum space Dirac matrix P is nilpotent and its rank equals half of its size, i.e. $rank(P) = 2^{k-1}$.

The Dirac representation of Cl(1, d-1) gives rise to the spin representation of the Lie algebra $\mathfrak{so}(1, d-1)$. The commutators

$$\Sigma_{jk} = \frac{1}{4} [\Gamma_j, \Gamma_k]$$

satisfy same relations as the generators of $\mathfrak{so}(1, d-1)$. The spin representation of $\mathrm{SO}(1, d-1)$ is the action of the matrix exponentials $\exp(\Sigma_{jk})$ on spinor space \mathbb{C}^{2^k} .

Charge conjugation matrix

An equivariant linear map from the spin representation of $\mathfrak{so}(1, d-1)$ to its dual is represented by a $2^k \times 2^k$ matrix C:

$$CP = -P^T C$$
 if $d = 2k$ is even,
 $CP = (-1)^k P^T C$ if $d = 2k + 1$ is odd.

Charge conjugation matrix

An equivariant linear map from the spin representation of $\mathfrak{so}(1, d-1)$ to its dual is represented by a $2^k \times 2^k$ matrix C:

$$CP = -P^T C$$
 if $d = 2k$ is even,
 $CP = (-1)^k P^T C$ if $d = 2k + 1$ is odd.

Example (d = 4, 5, 6)

Proposition (Symmetries)

- 1. *C* is symmetric for $k \equiv 0, 3 \mod 4$, otherwise skew symmetric.
- 2. C is block diagonal for $k \equiv 0 \mod 2$, else anti-block diagonal.
- 3. the $2^{k-1} \times 2^{k-1}$ blocks of C are skew symmetric when
 - $k = 2,3 \mod 4$; otherwise the blocks are symmetric.

Bra and ket

Our goal: model interactions among *n* massless particles $p_i = (p_{i1}, \ldots, p_{id})$. The tuple (p_1, \ldots, p_n) lies in $V(I_{d,n}) \subset \mathbb{C}^{nd}$. The momentum space Dirac matrix for the *i*th particle is

$$P_i = -p_{i1}\Gamma_1 + p_{i2}\Gamma_2 + p_{i3}\Gamma_3 + \cdots + p_{id}\Gamma_d$$

This matrix has size 2^k and rank 2^{k-1} . Clifford relations imply

$$P_i P_j + P_j P_i = 2p_i \cdot p_j \operatorname{Id}_{2^k} = 2s_{ij} \operatorname{Id}_{2^k}.$$

Bra and ket

Our goal: model interactions among *n* massless particles $p_i = (p_{i1}, \ldots, p_{id})$. The tuple (p_1, \ldots, p_n) lies in $V(I_{d,n}) \subset \mathbb{C}^{nd}$. The momentum space Dirac matrix for the *i*th particle is

$$P_i = -p_{i1}\Gamma_1 + p_{i2}\Gamma_2 + p_{i3}\Gamma_3 + \cdots + p_{id}\Gamma_d.$$

This matrix has size 2^k and rank 2^{k-1} . Clifford relations imply

$$P_iP_j + P_jP_i = 2p_i \cdot p_j \operatorname{Id}_{2^k} = 2s_{ij} \operatorname{Id}_{2^k}.$$

We parameterize the column space of P_i using a vector $z_i = (z_{i,1}, z_{i,2}, ..., z_{i,2^{k-2}}, 0, 0, ..., 0, z_{i,2^{k-2}+1}, ..., z_{i,2^{k-1}})^T$.

Use Dirac's ket-notation for vectors in this column space:

$$|i\rangle = P_i z_i.$$

Use the bra-notation $\langle i |$ for the row vector $|i\rangle^T$. The spinors $|i\rangle$ and $\langle i |$ depend on $d + 2^{k-1}$ parameters. They represent particle *i*.

Spinor brackets

The *spinor brackets* of order two and three are

$$\langle ij \rangle = \langle i | C | j \rangle$$
 and $\langle ij k \rangle = \langle i | CP_j | k \rangle$.
Here $i, j, k \in \{1, 2, ..., n\}$. The ℓ -th order spinor brackets are
 $\langle i_1 i_2 \cdots i_\ell \rangle = \langle i_1 | CP_{i_2} \cdots P_{i_{\ell-1}} | i_\ell \rangle$.

Spinor brackets are Lorentz-invariant elements in the ring

$$R_{d,n} = \mathbb{C}[p,z]/I_{d,n},$$

which is generated by *nd* parameters p_{ij} and $n2^{k-1}$ parameters z_{ij} .

Spinor brackets

The *spinor brackets* of order two and three are

$$\langle ij \rangle = \langle i | C | j \rangle \text{ and } \langle ij k \rangle = \langle i | CP_j | k \rangle.$$

Here $i, j, k \in \{1, 2, \dots, n\}$. The ℓ -th order spinor brackets are $\langle i_1 i_2 \cdots i_\ell \rangle = \langle i_1 | CP_{i_2} \cdots P_{i_{\ell-1}} | i_\ell \rangle.$

Spinor brackets are Lorentz-invariant elements in the ring

$$R_{d,n} = \mathbb{C}[p,z]/I_{d,n},$$

which is generated by *nd* parameters p_{ij} and $n2^{k-1}$ parameters z_{ij} . **Example**. For d = 3 we have

$$\begin{array}{lll} \langle ij \rangle & = & \left[z_{i1} \ 0 \right] \begin{bmatrix} p_{i3} & p_{i1} + p_{i2} \\ -p_{i1} + p_{i2} & -p_{i3} \end{bmatrix} \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} p_{j3} & -p_{j1} + p_{j2} \\ p_{j1} + p_{j2} & -p_{j3} \end{bmatrix} \begin{bmatrix} z_{j1} \\ 0 \end{bmatrix} \\ & = & -p_{i1}p_{j3}z_{i1}z_{j1} - p_{i2}p_{j3}z_{i1}z_{j1} + p_{i3}p_{j1}z_{i1}z_{j1} + p_{i3}p_{j2}z_{i1}z_{j1}, \end{array}$$

$$\langle ijk \rangle = p_{i1}p_{j1}p_{k1}z_{i1}z_{k1} + p_{i1}p_{j1}p_{k2}z_{i1}z_{k1} - p_{i1}p_{j2}p_{k1}z_{i1}z_{k1} - p_{i1}p_{j2}p_{k2}z_{i1}z_{k1} - p_{i1}p_{j3}p_{k3}z_{i1}z_{k1} + p_{i2}p_{j1}p_{k1}z_{i1}z_{k1} + p_{i2}p_{j1}p_{k2}z_{i1}z_{k1} - p_{i2}p_{j2}p_{k1}z_{i1}z_{k1} - p_{i2}p_{j2}p_{k2}z_{i1}z_{k1} - p_{i2}p_{j3}p_{k3}z_{i1}z_{k1} + p_{i3}p_{j1}p_{k3}z_{i1}z_{k1} + p_{i3}p_{j2}p_{k3}z_{i1}z_{k1} - p_{i3}p_{j3}p_{k1}z_{i1}z_{k1} - p_{i3}p_{j3}p_{k2}z_{i1}z_{k1} .$$

Matrices of spinor brackets

Multiply matrices of formats $n \times 2^k$, $2^k \times 2^k$ and $2^k \times n$ to define

$$S := (\langle ij \rangle)_{1 \le i,j \le n} = (|1\rangle, \dots, |n\rangle)^T \cdot C \cdot (|1\rangle, \dots, |n\rangle).$$
$$T_j := (\langle ijk \rangle)_{1 \le i,k \le n} = (|1\rangle, \dots, |n\rangle)^T \cdot C \cdot P_j \cdot (|1\rangle, \dots, |n\rangle).$$

Matrices of spinor brackets

Multiply matrices of formats $n \times 2^k$, $2^k \times 2^k$ and $2^k \times n$ to define

$$S := (\langle ij \rangle)_{1 \le i,j \le n} = (|1\rangle, \dots, |n\rangle)^T \cdot C \cdot (|1\rangle, \dots, |n\rangle).$$

$$\overline{j} := (\langle ijk \rangle)_{1 \le i,k \le n} = (|1\rangle, \dots, |n\rangle)^T \cdot C \cdot P_j \cdot (|1\rangle, \dots, |n\rangle).$$

Theorem

7

The $n \times n$ matrix S has rank $\leq 2^k$ with zeros on the diagonal. If $k \equiv 0,3 \mod 4$ then S is symmetric; otherwise skew symmetric:

$$\langle i i \rangle = 0$$
 and $\langle i j \rangle = \pm \langle j i \rangle$ for $1 \le i, j \le n$.

The matrix T_j has rank $\leq 2^{k-1}$ with zeros row and column j. If $d \equiv 1, 2, 3, 4 \mod 8$ then T_j is symmetric; else skew symmetric:

 $\langle jjk \rangle = \langle ijj \rangle = 0 \text{ and } \langle ijk \rangle = \pm \langle kji \rangle \text{ for } 1 \leq i, j, k \leq n.$

The sum of the matrices T_j is zero: $T_1 + T_2 + \cdots + T_n = 0$.

14 / 22

Example: Four particles for flatlanders

For d = 3, k = 1, n = 4, there are six order two spinor brackets:

$$S = \begin{bmatrix} 0 & \langle 12 \rangle & \langle 13 \rangle & \langle 14 \rangle \\ -\langle 12 \rangle & 0 & \langle 23 \rangle & \langle 24 \rangle \\ -\langle 13 \rangle & -\langle 23 \rangle & 0 & \langle 34 \rangle \\ -\langle 14 \rangle & -\langle 24 \rangle & -\langle 34 \rangle & 0 \end{bmatrix}$$

٠

The 24 spinor brackets of order three are the entries of

$$T_{1} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & \langle 212 \rangle & \langle 213 \rangle & \langle 214 \rangle \\ 0 & \langle 213 \rangle & \langle 313 \rangle & \langle 314 \rangle \\ 0 & \langle 214 \rangle & \langle 314 \rangle & \langle 414 \rangle \end{bmatrix}, \quad T_{2} = \begin{bmatrix} \langle 121 \rangle & 0 & \langle 123 \rangle & \langle 124 \rangle \\ 0 & 0 & 0 & 0 \\ \langle 123 \rangle & 0 & \langle 323 \rangle & \langle 324 \rangle \\ \langle 124 \rangle & 0 & \langle 324 \rangle & \langle 424 \rangle \end{bmatrix},$$
$$T_{3} = \begin{bmatrix} \langle 131 \rangle & \langle 132 \rangle & 0 & \langle 134 \rangle \\ \langle 132 \rangle & \langle 232 \rangle & 0 & \langle 234 \rangle \\ 0 & 0 & 0 & 0 \\ \langle 134 \rangle & \langle 234 \rangle & 0 & \langle 434 \rangle \end{bmatrix}, \quad T_{4} = \begin{bmatrix} \langle 141 \rangle & \langle 142 \rangle & \langle 143 \rangle & 0 \\ \langle 142 \rangle & \langle 242 \rangle & \langle 243 \rangle & 0 \\ \langle 143 \rangle & \langle 243 \rangle & \langle 343 \rangle & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

15 / 22

・ロト・日本・モト・モト ヨー うへつ

Example: Four particles for flatlanders

The 30 brackets define the kinematic variety in $\mathbb{P}^5 \times \mathbb{P}^{23}$. This is irreducible of dimension 4 and its multidegree is

 $5s^5t^{19} + 28s^4t^{20} + 24s^3t^{21} + 10s^2t^{22} + 2st^{23} \in H^*(\mathbb{P}^5 \times \mathbb{P}^{23}, \mathbb{Z}).$

The ideal is generated by 10 linear forms in $T_1 + T_2 + T_3 + T_4$ plus 54 = 1 + 24 + 29 quadrics.

Example: Four particles for flatlanders

The 30 brackets define the kinematic variety in $\mathbb{P}^5 \times \mathbb{P}^{23}$. This is irreducible of dimension 4 and its multidegree is

 $5s^5t^{19} + 28s^4t^{20} + 24s^3t^{21} + 10s^2t^{22} + 2st^{23} \in H^*(\mathbb{P}^5 \times \mathbb{P}^{23}, \mathbb{Z}).$

The ideal is generated by 10 linear forms in $T_1 + T_2 + T_3 + T_4$ plus 54 = 1 + 24 + 29 quadrics. The Plücker quadric

$$\langle 12 \rangle \langle 34 \rangle - \langle 13 \rangle \langle 24 \rangle + \langle 14 \rangle \langle 23 \rangle = Pfaffian(S),$$

ensures that S has rank two. The 24 binomial quadrics

$$\langle ijk\rangle\langle ljm\rangle - \langle ijm\rangle\langle ljk\rangle.$$

are 2 × 2 minors of the slices T_j . Finally, 29 bilinear relations like $\langle 12 \rangle \langle 324 \rangle - \langle 34 \rangle \langle 142 \rangle$ and $\langle 12 \rangle \langle 243 \rangle - \langle 13 \rangle \langle 242 \rangle + \langle 23 \rangle \langle 142 \rangle$

ensure that the 4 × 4 × 5 tensor *ST* has rank two. They are in the radical of the 3 × 3 minors of the 4 × 20 matrix (S, T_1, T_2, T_3, T_4) .

Varieties in matrix space

The $\binom{n}{2}$ order two spinor brackets $\langle ij \rangle$ form an $n \times n$ matrix S which is either symmetric or skew symmetric. The set of all such matrices defines the *kinematic variety* $\mathcal{K}_{d,n}^{(2)}$ in $\mathbb{P}^{\binom{n}{2}-1}$.

Theorem

For d = 3, the ideal of $\mathcal{K}_{3,n}^{(2)}$ is given by 4×4 -Pfaffians of a skew $n \times n$ matrix, so it is the Grassmannian $\operatorname{Gr}(2, n)$. For d = 4, 5, we get 6×6 -Pfaffians, so $\mathcal{K}_{d,n}^{(2)}$ is the secant variety of $\operatorname{Gr}(2, n)$.

Varieties in matrix space

The $\binom{n}{2}$ order two spinor brackets $\langle ij \rangle$ form an $n \times n$ matrix S which is either symmetric or skew symmetric. The set of all such matrices defines the *kinematic variety* $\mathcal{K}_{d,n}^{(2)}$ in $\mathbb{P}^{\binom{n}{2}-1}$.

Theorem

For d = 3, the ideal of $\mathcal{K}_{3,n}^{(2)}$ is given by 4×4 -Pfaffians of a skew $n \times n$ matrix, so it is the Grassmannian $\operatorname{Gr}(2, n)$. For d = 4, 5, we get 6×6 -Pfaffians, so $\mathcal{K}_{d,n}^{(2)}$ is the secant variety of $\operatorname{Gr}(2, n)$.

Conjecture

For d = 6, 7, 8, 9, the kinematic variety $\mathcal{K}_{d,n}^{(2)}$ consists of all symmetric $n \times n$ matrices with zero diagonal and rank $\leq 2^{\lfloor d/2 \rfloor}$.

For *d* even, the spin representation splits into two irreducibles. Use separate brackets $\langle ij \rangle$ and [ij] for each block. For *d* = 4, we recover the flag varieties $Fl(2, n - 2; \mathbb{C}^n)$ in Y. El Maazouz, A. Pfister and BSt: *Spinor-helicity varieties*, 2024.

Varieties in tensor space

Write $\mathcal{K}_{d,n}^{(3)}$ for the kinematic variety of $n \times n \times (n+1)$ tensors ST. The $n \times n$ slices S, T_1, \ldots, T_n are symmetric or skew symmetric, depending on residue classes of $k = \lfloor d/2 \rfloor \mod 4$ and $d \mod 8$. The ideal of $\mathcal{K}_{d,n}^{(3)}$ is \mathbb{Z}^2 -graded.

The variety lives in $\mathbb{P}^{\binom{n}{2}-1} \times \mathbb{P}^{K-1}$, where

K = n ⋅ (ⁿ₂) when slices T_j are symmetric (d ≡ 1, 2, 3, 4 mod 8),
 K = n ⋅ (ⁿ⁻¹₂) when slices T_j are skew symmetric.

Varieties in tensor space

Write $\mathcal{K}_{d,n}^{(3)}$ for the kinematic variety of $n \times n \times (n+1)$ tensors ST. The $n \times n$ slices S, T_1, \ldots, T_n are symmetric or skew symmetric, depending on residue classes of $k = \lfloor d/2 \rfloor \mod 4$ and $d \mod 8$. The ideal of $\mathcal{K}_{d,n}^{(3)}$ is \mathbb{Z}^2 -graded.

The variety lives in $\mathbb{P}^{\binom{n}{2}-1} \times \mathbb{P}^{K-1}$, where

K = n ⋅ (ⁿ₂) when slices T_j are symmetric (d ≡ 1,2,3,4 mod 8),
 K = n ⋅ (ⁿ⁻¹₂) when slices T_j are skew symmetric.

Conjecture (Flatlanders)

The variety $\mathcal{K}_{3,n}^{(3)}$ has dimension 3n - 8. Its points are tensors ST of rank 2, where S is skew symmetric and the T_j are symmetric of rank ≤ 1 , summing to 0, with zeros in j-th row/column. Its ideal is generated by linear forms and quadrics: the entries of $T_1 + \cdots + T_n$, the 4×4 pfaffians of S, the 2×2 minors of the T_j , and bilinear Pfaffians in the radical of the 3×3 minors of the flattening (S, T_1, \ldots, T_n) .

Numerical algebraic geometry

Goal: Study the kinematic varieties $\mathcal{K}_{d,n}^{(3)}$ for arbitrary *d* and *n*. **First question**: What is the dimension?

Proposition

The dimensions of small kinematic varieties $\mathcal{K}_{d,n}^{(3)}$ are

$d \setminus n$	4	5	6	7	8	9	10	11	12
4	8	13	18	23	28	33	38	43	48
5	7	13	19	25	31	37	43	49	55
6	9	20	30	40	49	58	67	76	85
7	9	20	30	40	50	60	70	80	90
8	10	28	51	67	82	97	112	127	142
9	15	33	49	65	81	97	113	129	145

We computed these numbers with numerical software in julia: P. Breiding and S. Timme: *HomotopyContinuation.jl: A package for homotopy continuation in Julia*, Mathematical Software, ICMS 2018, Lecture Notes in Computer Science, **10931**, 458-465, 2018.

Five-dimensional spacetime

Points in $\mathcal{K}_{5,n}^{(3)}$ are $n \times n \times (n+1)$ tensors ST. Slices S and T_j are skew symmetric of rank 4 resp. 2. The T_j satisfy linear constraints.

Proposition

For each index $j \in \{1, ..., n\}$, the skew symmetric $n \times n$ matrix

$$(|1\rangle,\ldots,z_j,\ldots,|n\rangle)^T \cdot C \cdot P_j \cdot (|1\rangle,\ldots,z_j,\ldots,|n\rangle)$$

contains both brackets $\langle ij \rangle$ and $\langle ijk \rangle$. It has rank ≤ 2 on $\mathcal{K}_{5,n}^{(3)}$, so the 4×4 Pfaffians give bilinear ideal generators. Furthermore, the $n \times (n^2+n)$ flattening (S, T_1, \ldots, T_n) has rank ≤ 4 on $\mathcal{K}_{5,n}^{(3)}$. It contributes mixed 6×6 Pfaffians to the ideal generators.

The $n \times (n+1)$ slices of *ST* given by fixing indices *i* or *k* seem to have rank ≤ 3 . Interestingly, *the tensor rank of ST is at least* 5 on $\mathcal{K}_{5,n}^{(3)}$. We show this by evaluating the Strassen invariant on $3 \times 3 \times 3$ subtensors.

化白豆 化间面 化医原油 医原生素

Example: Five particles in five-dim'l spacetime

The variety $\mathcal{K}_{5,5}^{(3)} \subset \mathbb{P}^9 \times \mathbb{P}^{29}$ has dimension 13. Its ideal is generated by 10 linear forms, 25 quadrics, 15 cubics and 5 quartics. Each T_j is a skew symmetric with a zero row, so it contributes one Pfaffian $\langle ijk \rangle \langle \ell jm \rangle - \langle ij\ell \rangle \langle kjm \rangle + \langle ijm \rangle \langle kj\ell \rangle$.

The other 20 quadrics are bilinear, e.g. five 4×4 Pfaffians of

0	(12)	$\langle 13 \rangle$	$\langle 14 \rangle$	$\langle 15 \rangle$	
$-\langle 12 \rangle$	0	(213)	(214)	(215)	
$-\langle 13 \rangle$	$-\langle 213 \rangle$	0	$\langle 314 \rangle$	(315)	
$-\langle 14 \rangle$	$-\langle 214 \rangle$	$-\langle 314 \rangle$	0	$\langle 415 \rangle$	
$-\langle 15 \rangle$	$-\langle 215 \rangle$	$-\langle 315 \rangle$	$-\langle 415 \rangle$	0	

The 15 cubics ensure that $(S, T_1, T_2, T_3, T_4, T_5)$ has rank ≤ 4 . One of them is $\langle 213 \rangle \langle 123 \rangle \langle 435 \rangle - \langle 213 \rangle \langle 325 \rangle \langle 134 \rangle + \langle 213 \rangle \langle 324 \rangle \langle 135 \rangle + \langle 314 \rangle \langle 123 \rangle \langle 235 \rangle - \langle 314 \rangle \langle 325 \rangle \langle 132 \rangle - \langle 315 \rangle \langle 123 \rangle \langle 234 \rangle + \langle 315 \rangle \langle 324 \rangle \langle 132 \rangle.$

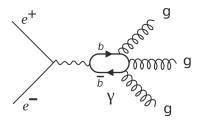
The 5 quartics are 4×4 minors of mixed slices like

0 0 0 0 0	$\begin{array}{c} \langle 12 \rangle \\ 0 \\ \langle 132 \rangle \\ \langle 142 \rangle \\ \langle 152 \rangle \end{array}$	$\begin{array}{c} \langle 13 \rangle \\ 0 \\ \langle 123 \rangle \\ 0 \\ \langle 143 \rangle \\ \langle 153 \rangle \end{array}$	$ \begin{array}{c} \langle 14 \rangle \\ 0 \\ \langle 124 \rangle \\ \langle 134 \rangle \\ 0 \\ \langle 154 \rangle \end{array} $	$ \begin{array}{c} \langle 15 \rangle \\ 0 \\ \langle 125 \rangle \\ \langle 135 \rangle \\ \langle 145 \rangle \\ 0 \end{array} \right] $	$, \begin{bmatrix} -\langle 0 \\ 0 \\ -\langle 1 \\ -\langle 1 \\ -\langle 1 \end{bmatrix}$	0 0 0 0 132> 0 142> 0	<pre></pre>	<pre></pre>	$ \begin{array}{c} \langle 25 \rangle \\ \langle 215 \rangle \\ 0 \\ \langle 235 \rangle \\ \langle 245 \rangle \\ 0 \end{array} \right] $,	etc	
										e 🖡	<	590

Conclusion

I learned a lot from Smita Rajan and Svala Sverrisdóttir. We hope you'll enjoy the papers on **Positive Geometry** in *Le Matematiche*.

Many connections remain to be explored:



イロト 不同 とうほう 不同 とう

