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Context

This talk presents a joint paper with two Berkeley PhD students,
Smita Rajan and Svala Sverrisdóttir, intended for publication in a
special volume Positive Geometry in the journal Le Matematiche.

Initial motivation: understand the mathematics behind Smita’s
Bachelor thesis (Physics at Brown U), and answer a question in

A. Pokraka, S. Rajan, L. Ren, A. Volovich, W. Zhao:
Five-dimensional spinor helicity for all masses and spins
arXiv:2405.09533, Journal of High Energy Physics.

Another goal: Extend nonlinear algebra in
Y. El Maazouz, A. Pfister and B. Sturmfels:
Spinor-helicity varieties, arXiv:2406.17331.
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Nonlinear algebra provides modern math-
ematical tools to address challenges arising 
in the sciences and engineering. It is useful 
everywhere, where polynomials appear: in 
particular, data and computational sciences, 
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Particles in d-dimensional spacetime
Spacetime is Rd or Cd , with the Lorentzian inner product

x · y = x1y1 − x2y2 − · · · − xnyn.

The Lorentz group SO(1, d − 1) consists of d × d matrices g
such that det(g) = 1 and (gx) · (gy) = x · y for all x , y ∈ Cd .

A configuration of n particles is given by momentum vectors

pi = (pi1, pi2, . . . , pid) ∈ Cd .

Assume that each particle is massless, i.e. pi · pi = 0:

p2i1 − p2i2 − p2i3 − · · · − p2id = 0 for i = 1, 2, . . . , n.

Also assume momentum conservation
∑n

i=1 pi = 0:

p1j + p2j + · · · + pnj = 0 for j = 1, 2, . . . , d .
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Ideals, varieties and algorithms

Let Id ,n ⊂ C[p] be the ideal generated by the n quadrics for
massless and the d linear forms for momentum conservation.

Here C[p] is the polynomial ring in nd variables pij .

Example (n = d = 3)

Three particles on the icecream cone. Let’s try it in Macaulay2:

i1 : R = QQ[ p11,p12,p13, p21,p22,p23, p31,p32,p33 ];

i2 : I = ideal( p11+p21+p31, p12+p22+p32, p13+p23+p33,
p112−p122−p132, p212−p222−p232, p312−p322−p332);

i3 : codim I, degree I
o3 = (6, 8)

i4 : isPrime I, isPrimary I
o4 = (false, true)

i5 : radical I33
o5 = ideal( . . . , p23∗p31− p21∗p33, p22∗p31− p21∗p32, . . . )

4 / 22



Ideals, varieties and algorithms

Let Id ,n ⊂ C[p] be the ideal generated by the n quadrics for
massless and the d linear forms for momentum conservation.

Here C[p] is the polynomial ring in nd variables pij .

Example (n = d = 3)

Three particles on the icecream cone. Let’s try it in Macaulay2:

i1 : R = QQ[ p11,p12,p13, p21,p22,p23, p31,p32,p33 ];

i2 : I = ideal( p11+p21+p31, p12+p22+p32, p13+p23+p33,
p112−p122−p132, p212−p222−p232, p312−p322−p332);

i3 : codim I, degree I
o3 = (6, 8)

i4 : isPrime I, isPrimary I
o4 = (false, true)

i5 : radical I33
o5 = ideal( . . . , p23∗p31− p21∗p33, p22∗p31− p21∗p32, . . . )

4 / 22



Ideals, varieties and algorithms

Let Id ,n ⊂ C[p] be the ideal generated by the n quadrics for
massless and the d linear forms for momentum conservation.

Here C[p] is the polynomial ring in nd variables pij .

Example (n = d = 3)

Three particles on the icecream cone. Let’s try it in Macaulay2:

i1 : R = QQ[ p11,p12,p13, p21,p22,p23, p31,p32,p33 ];

i2 : I = ideal( p11+p21+p31, p12+p22+p32, p13+p23+p33,
p112−p122−p132, p212−p222−p232, p312−p322−p332);

i3 : codim I, degree I
o3 = (6, 8)

i4 : isPrime I, isPrimary I
o4 = (false, true)

i5 : radical I33
o5 = ideal( . . . , p23∗p31− p21∗p33, p22∗p31− p21∗p32, . . . )

4 / 22



Prime time

Theorem
Id ,n is prime and a complete intersection, provided max(n, d) ≥ 4.

Proof: technical commutative algebra

How about using a parametric representation of the variety V (In)?

One idea is to express the variables in the first row and column in
terms of the entries of the (n − 1)× (d − 1) matrix p′ = (pij)i ,j≥2.

Remark (Bad News)

The elimination ideal Id ,n ∩ C[p′] is principal. Its generator is a
large polynomial of degree 2n−1. This hypersurface is a notable
obstruction to any easy parametrization. This does not exist.

Example: for n = 4, d = 5, the polynomial has 4671 terms of degree 8.

Use Hodges’ Momentum Twistors?
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Mandelstam invariants
Physical properties of our n particles are invariant under the group
G = O(1, d − 1). The ring of G -invariants in C[p] is generated by
the Mandelstam invariants sij = pi · pj . Consider the invariant ring

(C[p]/Id ,n)G = C[S ]/Md ,n.

The Mandelstam variety is the GIT quotient

V (Md ,n) = Spec
(
(C[p]/Id ,n)G

)
= V (Id ,n)//G .

Theorem
Let n ≥ 2 and d ≥ 4. The prime ideal Md ,n equals

⟨ s11, s22, . . . , snn ⟩ +
〈∑n

j=1 sij for i = 1, . . . , n
〉

+
〈
(d+1)× (d+1) minors of the symmetric matrix (sij)

〉
The dimension of the Mandelstam variety is

dim(V (Md ,n)) = nd − n − d −
(d
2

)
= dim(V (Id ,n)) − dim(G ).
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Clifford algebras and spinors

We now dive into the formalism used in physics:

A. Pokraka, S. Rajan, L. Ren, A. Volovich, W. Zhao: Five-dimensional

spinor helicity for all masses and spins, arXiv:2405.09533, JHEP.

Kinematic data for n particles are expressed in terms of spinors:

H. Elvang and Y. Huang: Scattering Amplitudes in

Gauge Theory and Gravity, Cambridge University Press, 2015.

This encoding rests on the Clifford algebra Cl(1, d − 1):

M. Rausch de Traubenberg: Clifford algebras in physics,

Adv. Appl. Clifford Algebr. 19 (2009) 869–908.

Mathematicians appreciate Bourbaki:

C. Chevalley: The Algebraic Theory of Spinors and Clifford Algebras:

Collected Works of Claude Chevalley, Volume 2, Springer Verlag, 1996.
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Dirac matrices
For us, spinors are vectors of length 2k where k = ⌊d/2⌋. We
recursively define 2k × 2k matrices Γ1, Γ2, . . . , Γd . For d = 2,

Γ1 =

[
0 1
−1 0

]
and Γ2 =

[
0 1
1 0

]
.

For larger d = 2k , take tensor products with Pauli matrices:

Γi = Γk−1,i ⊗
[
−1 0
0 1

]
for 1 ≤ i ≤ 2k − 2,

Γ2k−1 = Id2k−1 ⊗
[
0 1
1 0

]
, Γ2k = Id2k−1 ⊗

[
0 −i
i 0

]
.

For d = 2k + 1 odd, set Γ2k+1 = −ik−1 · Γ1Γ2 · · · Γ2k−1.

Proposition

The Dirac matrices satisfy the Clifford algebra relations:

Γ1
2 = −2 Id2k , Γj

2 = 2 Id2k for j ≥ 2

and ΓiΓj + ΓjΓi = 02k for i ̸= j .
Cl(1 , d−1)
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A matrix for one particle
The momentum space Dirac matrix is the linear combination

P = −p1Γ1 + p2Γ2 + p3Γ3 + · · ·+ pdΓd .

Example (d = 4, 5, 6)

P =

 0 0 p1 − p2 p3 − ip4
0 0 p3 + ip4 p1 + p2

−p1 − p2 p3 − ip4 0 0
p3 + ip4 −p1 + p2 0 0

 ,

P =

 p5 0 p1 − p2 p3 − ip4
0 p5 p3 + ip4 p1 + p2

−p1 − p2 p3 − ip4 −p5 0
p3 + ip4 −p1 + p2 0 −p5

 .

P =


0 0 0 0 −p1 + p2 0 −p3 + ip4 p5 − ip6
0 0 0 0 0 −p1 + p2 p5 + ip6 p3 + ip4
0 0 0 0 −p3 − ip4 p5 − ip6 −p1 − p2 0
0 0 0 0 p5 + ip6 p3 − ip4 0 −p1 − p2

p1 + p2 0 −p3 + ip4 p5 − ip6 0 0 0 0
0 p1 + p2 p5 + ip6 p3 + ip4 0 0 0 0

−p3 − ip4 p5 − ip6 p1 − p2 0 0 0 0 0
p5 + ip6 p3 − ip4 0 p1 − p2 0 0 0 0

 .
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Spin representation

Corollary

The relations of the Clifford algebra Cl(1, d − 1) imply

P2 = (−p21 + p22 + · · ·+ p2d) Id2k ,

det(P) = (p21 − p22 − · · · − p2d)
2k−1

.

For massless particles, the momentum space Dirac matrix P is
nilpotent and its rank equals half of its size, i.e. rank(P) = 2k−1.

The Dirac representation of Cl(1, d−1) gives rise to the spin
representation of the Lie algebra so(1, d−1). The commutators

Σjk =
1

4
[ Γj , Γk ]

satisfy same relations as the generators of so(1, d−1).

The spin representation of SO(1, d−1) is the action of

the matrix exponentials exp(Σjk) on spinor space C2k .
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Charge conjugation matrix
An equivariant linear map from the spin representation of
so(1, d − 1) to its dual is represented by a 2k × 2k matrix C :

CP = −PTC if d = 2k is even,
CP = (−1)kPTC if d = 2k + 1 is odd.

Example (d = 4, 5, 6)

C =

0 −i 0 0
i 0 0 0
0 0 0 −i
0 0 i 0

,
0 −i 0 0
i 0 0 0
0 0 0 i
0 0 −i 0

,


0 0 0 0 0 1 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 −1
0 0 0 0 0 0 1 0
0 −1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 −1 0 0 0 0 0



Proposition (Symmetries)

1. C is symmetric for k ≡ 0, 3 mod 4, otherwise skew symmetric.

2. C is block diagonal for k ≡ 0 mod 2, else anti-block diagonal.

3. the 2k−1 × 2k−1 blocks of C are skew symmetric when
k = 2, 3 mod 4; otherwise the blocks are symmetric.
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Bra and ket
Our goal: model interactions among n massless particles
pi = (pi1, . . . , pid). The tuple (p1, . . . , pn) lies in V (Id ,n) ⊂ Cnd .

The momentum space Dirac matrix for the ith particle is

Pi = −pi1Γ1 + pi2Γ2 + pi3Γ3 + · · · + pidΓd .

This matrix has size 2k and rank 2k−1. Clifford relations imply

PiPj + PjPi = 2pi · pj Id2k = 2sij Id2k .

We parameterize the column space of Pi using a vector

zi = ( zi ,1, zi ,2, . . . , zi ,2k−2 , 0, 0, . . . , 0 , zi ,2k−2+1, . . . , zi ,2k−1 )T .

Use Dirac’s ket-notation for vectors in this column space:

| i ⟩ = Pi zi .

Use the bra-notation ⟨ i | for the row vector | i ⟩T . The spinors | i ⟩
and ⟨ i | depend on d +2k−1 parameters. They represent particle i .
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Spinor brackets
The spinor brackets of order two and three are

⟨ ij ⟩ = ⟨ i |C | j ⟩ and ⟨ ij k ⟩ = ⟨ i |CPj | k ⟩.
Here i , j , k ∈ {1, 2, . . . , n}. The ℓ-th order spinor brackets are

⟨ i1i2 · · · iℓ ⟩ = ⟨ i1 |CPi2 · · ·Piℓ−1
| iℓ ⟩.

Spinor brackets are Lorentz-invariant elements in the ring

Rd ,n = C[p, z ]/Id ,n,

which is generated by nd parameters pij and n2k−1 parameters zij .

Example. For d = 3 we have

⟨ij⟩ =
[
zi1 0

][ pi3 pi1+pi2
−pi1+pi2 −pi3

][
0 1

−1 0

][
pj3 −pj1+pj2

pj1+pj2 −pj3

][
zj1
0

]
= −pi1pj3zi1zj1 − pi2pj3zi1zj1 + pi3pj1zi1zj1 + pi3pj2zi1zj1,

⟨ijk⟩ = pi1pj1pk1zi1zk1 + pi1pj1pk2zi1zk1 − pi1pj2pk1zi1zk1 − pi1pj2pk2zi1zk1
−pi1pj3pk3zi1zk1 + pi2pj1pk1zi1zk1 + pi2pj1pk2zi1zk1 − pi2pj2pk1zi1zk1
−pi2pj2pk2zi1zk1 − pi2pj3pk3zi1zk1 + pi3pj1pk3zi1zk1 + pi3pj2pk3zi1zk1

−pi3pj3pk1zi1zk1 − pi3pj3pk2zi1zk1.
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Matrices of spinor brackets
Multiply matrices of formats n×2k , 2k×2k and 2k×n to define

S :=
(
⟨ ij ⟩

)
1≤i ,j≤n

=
(
| 1 ⟩, . . . , | n ⟩

)T · C ·
(
| 1 ⟩, . . . , | n ⟩

)
.

Tj :=
(
⟨ ijk ⟩

)
1≤i ,k≤n

=
(
| 1 ⟩, . . . , | n ⟩

)T ·C ·Pj ·
(
| 1 ⟩, . . . , | n ⟩

)
.

Theorem
The n × n matrix S has rank ≤ 2k with zeros on the diagonal. If
k ≡ 0, 3 mod 4 then S is symmetric; otherwise skew symmetric:

⟨ i i ⟩ = 0 and ⟨ i j ⟩ = ±⟨ j i ⟩ for 1 ≤ i , j ≤ n.

The matrix Tj has rank ≤ 2k−1 with zeros row and column j. If
d ≡ 1, 2, 3, 4 mod 8 then Tj is symmetric; else skew symmetric:

⟨ j j k ⟩ = ⟨ i j j ⟩ = 0 and ⟨ i j k ⟩ = ±⟨ k j i ⟩ for 1 ≤ i , j , k ≤ n.

The sum of the matrices Tj is zero: T1 + T2 + · · ·+ Tn = 0.
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k ≡ 0, 3 mod 4 then S is symmetric; otherwise skew symmetric:

⟨ i i ⟩ = 0 and ⟨ i j ⟩ = ±⟨ j i ⟩ for 1 ≤ i , j ≤ n.

The matrix Tj has rank ≤ 2k−1 with zeros row and column j. If
d ≡ 1, 2, 3, 4 mod 8 then Tj is symmetric; else skew symmetric:

⟨ j j k ⟩ = ⟨ i j j ⟩ = 0 and ⟨ i j k ⟩ = ±⟨ k j i ⟩ for 1 ≤ i , j , k ≤ n.

The sum of the matrices Tj is zero: T1 + T2 + · · ·+ Tn = 0.

14 / 22



Example: Four particles for flatlanders

For d = 3, k = 1, n = 4, there are six order two spinor brackets:

S =

 0 ⟨12⟩ ⟨13⟩ ⟨14⟩
−⟨12⟩ 0 ⟨23⟩ ⟨24⟩
−⟨13⟩ −⟨23⟩ 0 ⟨34⟩
−⟨14⟩ −⟨24⟩ −⟨34⟩ 0

 .

The 24 spinor brackets of order three are the entries of

T1 =

0 0 0 0
0 ⟨212⟩ ⟨213⟩ ⟨214⟩
0 ⟨213⟩ ⟨313⟩ ⟨314⟩
0 ⟨214⟩ ⟨314⟩ ⟨414⟩

 , T2 =

⟨121⟩ 0 ⟨123⟩ ⟨124⟩
0 0 0 0

⟨123⟩ 0 ⟨323⟩ ⟨324⟩
⟨124⟩ 0 ⟨324⟩ ⟨424⟩

 ,

T3 =

⟨131⟩ ⟨132⟩ 0 ⟨134⟩
⟨132⟩ ⟨232⟩ 0 ⟨234⟩
0 0 0 0

⟨134⟩ ⟨234⟩ 0 ⟨434⟩

 , T4 =

⟨141⟩ ⟨142⟩ ⟨143⟩ 0
⟨142⟩ ⟨242⟩ ⟨243⟩ 0
⟨143⟩ ⟨243⟩ ⟨343⟩ 0
0 0 0 0

 .
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Example: Four particles for flatlanders
The 30 brackets define the kinematic variety in P5 × P23.
This is irreducible of dimension 4 and its multidegree is

5s5t19 + 28s4t20 + 24s3t21 + 10s2t22 + 2st23 ∈ H∗(P5 × P23,Z).

The ideal is generated by 10 linear forms in T1 + T2 + T3 + T4

plus 54 = 1 + 24 + 29 quadrics.

The Plücker quadric

⟨12⟩⟨34⟩ − ⟨13⟩⟨24⟩ + ⟨14⟩⟨23⟩ = Pfaffian(S),

ensures that S has rank two. The 24 binomial quadrics

⟨i j k⟩⟨l j m⟩ − ⟨i j m⟩⟨l j k⟩.

are 2× 2 minors of the slices Tj . Finally, 29 bilinear relations like

⟨12⟩⟨324⟩ − ⟨34⟩⟨142⟩ and ⟨12⟩⟨243⟩ − ⟨13⟩⟨242⟩+ ⟨23⟩⟨142⟩

ensure that the 4× 4× 5 tensor ST has rank two. They are in the
radical of the 3× 3 minors of the 4× 20 matrix (S ,T1,T2,T3,T4).
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Varieties in matrix space

The
(n
2

)
order two spinor brackets ⟨ij⟩ form an n×n matrix S

which is either symmetric or skew symmetric. The set of all

such matrices defines the kinematic variety K(2)
d ,n in P(

n
2)−1.

Theorem
For d = 3, the ideal of K(2)

3,n is given by 4×4-Pfaffians of a skew
n × n matrix, so it is the Grassmannian Gr(2, n). For d = 4, 5,

we get 6× 6-Pfaffians, so K(2)
d ,n is the secant variety of Gr(2, n).

Conjecture

For d = 6, 7, 8, 9, the kinematic variety K(2)
d ,n consists of all

symmetric n×n matrices with zero diagonal and rank ≤ 2⌊d/2⌋.

For d even, the spin representation splits into two irreducibles.
Use separate brackets ⟨ij⟩ and [ij ] for each block.

For d = 4, we recover the flag varieties Fl(2, n − 2;Cn) in
Y. El Maazouz, A. Pfister and BSt: Spinor-helicity varieties, 2024.
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Varieties in tensor space
Write K(3)

d ,n for the kinematic variety of n × n × (n+1) tensors ST .

The n × n slices S ,T1, . . . ,Tn are symmetric or skew symmetric,
depending on residue classes of k = ⌊d/2⌋ mod 4 and d mod 8.

The ideal of K(3)
d,n is Z2-graded.

The variety lives in P(
n
2)−1 × PK−1, where

▶ K = n ·
(n
2

)
when slices Tj are symmetric (d ≡ 1, 2, 3, 4 mod 8),

▶ K = n ·
(n−1

2

)
when slices Tj are skew symmetric.

Conjecture (Flatlanders)

The variety K(3)
3,n has dimension 3n − 8. Its points are tensors ST

of rank 2, where S is skew symmetric and the Tj are symmetric
of rank ≤ 1, summing to 0, with zeros in j-th row/column.

Its ideal is generated by linear forms and quadrics:
the entries of T1 + · · ·+ Tn, the 4×4 pfaffians of S,
the 2×2 minors of the Tj , and bilinear Pfaffians in the

radical of the 3×3 minors of the flattening (S ,T1, . . . ,Tn).
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Numerical algebraic geometry

Goal: Study the kinematic varieties K(3)
d ,n for arbitrary d and n.

First question: What is the dimension?

Proposition

The dimensions of small kinematic varieties K(3)
d ,n are

d\n 4 5 6 7 8 9 10 11 12
4 8 13 18 23 28 33 38 43 48
5 7 13 19 25 31 37 43 49 55
6 9 20 30 40 49 58 67 76 85
7 9 20 30 40 50 60 70 80 90
8 10 28 51 67 82 97 112 127 142
9 15 33 49 65 81 97 113 129 145

We computed these numbers with numerical software in julia:
P. Breiding and S. Timme: HomotopyContinuation.jl: A package for

homotopy continuation in Julia, Mathematical Software, ICMS 2018,

Lecture Notes in Computer Science, 10931, 458-465, 2018.
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Five-dimensional spacetime

Points in K(3)
5,n are n × n × (n + 1) tensors ST . Slices S and Tj are

skew symmetric of rank 4 resp. 2. The Tj satisfy linear constraints.

Proposition

For each index j ∈ {1, . . . , n}, the skew symmetric n × n matrix(
|1⟩, . . . , zj , . . . , |n⟩

)T · C · Pj ·
(
|1⟩, . . . , zj , . . . , |n⟩

)
contains both brackets ⟨ij⟩ and ⟨ijk⟩. It has rank ≤ 2 on K(3)

5,n, so
the 4×4 Pfaffians give bilinear ideal generators. Furthermore, the

n × (n2+n) flattening (S ,T1, . . . ,Tn) has rank ≤ 4 on K(3)
5,n.

It contributes mixed 6× 6 Pfaffians to the ideal generators.

The n × (n + 1) slices of ST given by fixing indices i or k seem to have

rank ≤ 3. Interestingly, the tensor rank of ST is at least 5 on K(3)
5,n. We

show this by evaluating the Strassen invariant on 3×3×3 subtensors.
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Example: Five particles in five-dim’l spacetime

The variety K(3)
5,5 ⊂ P9 × P29 has dimension 13. Its ideal is

generated by 10 linear forms, 25 quadrics, 15 cubics and
5 quartics. Each Tj is a skew symmetric with a zero row, so it
contributes one Pfaffian ⟨ijk⟩⟨ℓjm⟩ − ⟨ijℓ⟩⟨kjm⟩+ ⟨ijm⟩⟨kjℓ⟩.

The other 20 quadrics are bilinear, e.g. five 4×4 Pfaffians of 0 ⟨12⟩ ⟨13⟩ ⟨14⟩ ⟨15⟩
−⟨12⟩ 0 ⟨213⟩ ⟨214⟩ ⟨215⟩
−⟨13⟩ −⟨213⟩ 0 ⟨314⟩ ⟨315⟩
−⟨14⟩ −⟨214⟩ −⟨314⟩ 0 ⟨415⟩
−⟨15⟩ −⟨215⟩ −⟨315⟩ −⟨415⟩ 0

 .

The 15 cubics ensure that (S ,T1,T2,T3,T4,T5) has rank ≤ 4.
One of them is ⟨213⟩⟨123⟩⟨435⟩ − ⟨213⟩⟨325⟩⟨134⟩+ ⟨213⟩⟨324⟩⟨135⟩+
⟨314⟩⟨123⟩⟨235⟩ − ⟨314⟩⟨325⟩⟨132⟩ − ⟨315⟩⟨123⟩⟨234⟩+ ⟨315⟩⟨324⟩⟨132⟩.

The 5 quartics are 4× 4 minors of mixed slices like0 ⟨12⟩ ⟨13⟩ ⟨14⟩ ⟨15⟩
0 0 0 0 0
0 0 ⟨123⟩ ⟨124⟩ ⟨125⟩
0 ⟨132⟩ 0 ⟨134⟩ ⟨135⟩
0 ⟨142⟩ ⟨143⟩ 0 ⟨145⟩
0 ⟨152⟩ ⟨153⟩ ⟨154⟩ 0

 ,

−⟨12⟩ 0 ⟨23⟩ ⟨24⟩ ⟨25⟩
0 0 ⟨213⟩ ⟨214⟩ ⟨215⟩
0 0 0 0 0

−⟨132⟩ 0 0 ⟨234⟩ ⟨235⟩
−⟨142⟩ 0 ⟨243⟩ 0 ⟨245⟩
−⟨152⟩ 0 ⟨253⟩ ⟨254⟩ 0

 , etc . . .
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Conclusion
I learned a lot from Smita Rajan and Svala Sverrisdóttir. We hope
you’ll enjoy the papers on Positive Geometry in Le Matematiche.

Many connections remain to be explored:

15.05.21, 11(371024px-Feynman_Diagram_Y-3g.svg.png 1.024×629 pixels
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