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Motivation

Correlation functions are the main observables in cosmology:

They encode the history of the universe. (See my Colloquium in Leipzig)



Motivation

In this talk, we will consider a toy model of cosmology:
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Conformal mass j k Non-conformal e=0:dS
interaction e = —1: flat
e = —2: radiation
e = —3 : matter

This allows us to derive a large amount of “mathematical data” and
look for hidden patterns in the results.



Motivation

Correlators in this theory can be written as twisted integrals:
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They are part of a vector space of master integrals:
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Motivation

The differential equations satisfied by the master integrals quickly
become very complex:
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Motivation

Something remarkable happened when we drew pictures of the results!
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Background



Wavefunction

Correlators can be computed in terms of a wavefunction:
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Wavefunction

For small fluctuations, we expand the wavefunction as
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Feynman Rules

The wavefunction coefficients are determined by simple Feynman rules:

t =1« Bulk-to-boundary propagator

for every external line
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Time integral for k Bulk-to-bulk propagator
every vertex for every internal line
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Flat Space

In flat space, it is easy to compute these correlators: @i (t) = etk
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Results are rational functions of the energies entering each vertex.
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Graph Tubings

1
We can represent the results by graph tubings: wﬂa‘t = Z H I
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Canonical Forms

The results also correspond to canonical forms of the regions bounded by
the singular lines:
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“cosmological polytopes”



Power-Law Cosmology

We will consider a toy model of cosmology:
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Mode functions are still simple: ¢ (t) = plte ikt

We can relate the correlators in this theory to the flat-space results.
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Correlators as Twisted Integrals

Using
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We will study these twisted integrals using the method of
differential equations.
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Master Integrals

Introduce a family of integrals with the same singularities:
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e These integrals form a finite-dimensional vector space.

 Number of master integrals = number of bounded regions:
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e A preferred basis is given by the canonical forms.



Differential Equations

Being part of a finite-dimensional vector space, the master integrals satisfy
coupled ditferential equations:
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Increasing Complexity

This approach breaks down for more complicated graphs:

e Hard to visualize the higher-dimensional integrals.

e Finding an optimal basis is a bit of an art.
 Finding the differential equations is algebraically challenging.

* Results aren’t very enlightening.

Remarkably, there are hidden combinatorial and geometric structures

underlying these differential equations that allow us to bypass these challenges.



A Hidden Pattern



Graphical Representation

The differential equations for the two-site chain can be written as
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Kinematic Flow

Upon taking derivatives, the graph tubings grow:
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Simple rules allow us to predict this “evolution” for arbitrary graphs.



Letters

Letters are connected tubes of marked graphs:
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Functions

Functions are complete tubings of marked graphs:
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e Uniquely defines a basis of functions.

e Each function is related to the original wavefunction by replacement rules:
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Kinematic Flow

1. Start with the graph tubing associated to a parent function of interest:

Ql —H—0—*—0




Kinematic Flow

1. Start with the graph tubing associated to a parent function of interest:

Ql —H—0—*—0

2. Generate a family tree of its descendants:
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Activation

e Activate the tube enclosing each vertex.



Kinematic Flow

1. Start with the graph tubing associated to a parent function of interest:

Ql —H—0—*—0

2. Generate a family tree of its descendants:
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Activation Growth

e Activate the tube enclosing each vertex.

e Activated tubes can grow to enclose adjacent crosses.

e If the grown tube intersects another tube, they merge.



Kinematic Flow

1. Start with the graph tubing associated to a parent function of interest:
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2. Generate a family tree of its descendants:
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Activation Growth Absorption

e Activate the tube enclosing each vertex.
e Activated tubes can grow to enclose adjacent crosses.

e If the grown tube intersects another tube, they merge.

e If an activated tube is adjacent to another tube, it can absorb it. ~ Arkani-Hamed, DB, Hillman,
Joyce, Lee and Pimentel [2023]



Kinematic Flow

1. Start with the graph tubing associated to a parent function of interest:

Ql —H—0—*—0

2. Generate a family tree of its descendants:

3. Assign functions to each graph tubing in the tree.



Kinematic Flow

4. From the family tree, we directly read off the differential equation:
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e Each activated tube becomes a letter in the differential equation.

 The coefficient of each letter is the function associated to the graph minus the functions

associated to its immediate descendant graphs.
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Remarkably, this works for arbitrary tree graphs and loop integrands!



Examples

The equations for the two-site chain follow from:
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Examples

The equations for the three-site chain follow from:
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Examples

The equations for the three-site chain follow from:
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Examples

The equations for the three-site chain follow from:
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Examples

The graphical rules are local and can be used to predict the differential
equations for arbitrary tree graphs with different topologies:

In the paper, we present many nontrivial examples.

The same rules also work for loop integrands:
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Timeless Cosmology

The physics before the hot Big Bang has been replaced by a kinematic flow
on the spatial boundary:
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[s there a deeper mathematical structure underlying this flow?




Conclusions



Summary

We developed a combinatorial description of cosmological correlators:
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Simple rules determine the structure of all tree graphs and loop integrands.



Open Problems

Many open problems remain:

e Why does this work?
e What is the geometric origin of the combinatorial rules?
e s there a generalization to loop integrals?

e |s there a generalization to massive fields?

Please get in touch if you would like to discuss any of this!
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