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Wavefunction coefficients

Cosmological correlators are path integrals whose kernel is called the

wavefunctional of the universe Ψ

〈ϕ(x1) · · ·ϕ(xN )〉 =

∫
Dϕ ϕ(x1) · · ·ϕ(xm) |Ψ[ϕ]|2

Ψ expanded for small fluctuations in the field ϕ→ ϕ+ δϕ

Ψ[ϕ] := exp

[
i
∑
m

1

m!

∫ ( m∏
i=1

ddki
(2π)d

ϕ~ki

)

× δ(d)
(
k1 + · · ·+ km

)
ψ(`)
m

(
k1, . . . ,km

)]

The expansion coefficients are called wavefunction coefficients (WFCs)

— cosmological analogues of scattering amplitudes
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The toy model

Conformally-coupled scalar field in a power-law FRW cosmology with

non-conformal polynomial interactions in (d+ 1)-dimensional spacetime
[N. Arkani-Hamed, J. Maldacena ’15, N. Arkani-Hamed, P. Benincasa, A. Postnikov ’17,

N. Arkani-Hamed, A. Hillman ’19, + many more ]

ds2=a2(η)
[
−dη2+dxidx

i
]

a(η)=
1

η1+ε


ε = 0 (dS)

ε = −1 (flat)

ε = −2 (RD)

ε = −3 (MD)

WFC’s for any ε: integrate flat-space WFC against a kernel
[N. Arkani-Hamed, D. Baumann, A. Hillman, A. Joyce, H. Lee, G.L. Pimentel ’23; S. De, AP ’23;

B. Fan and Z.-Z. Xianyu ’24; P. Benincasa, G. Brunello, M.K. Mandal, P. Mastrolia, F. Vazão ’24;

C. Fevola, G.L. Pimentel, A-L. Sattelberger, T. Westerdijk ’24; + many more ]

ψε,G( X,Y︸ ︷︷ ︸
kin. data

) :=

∫ ∞
0

dx1 x
ε
1 · · ·

∫ ∞
0

dxn x
ε
n ψG(x + X,Y)
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Computing flat-space wavefunction coefficients

Wavefunction coefficients can be computed using Feynman diagrams

k1 k2 k3 k4 k5

Feynman

Calculator
1000

ψG (X,Y)

|k1|+ |k2| = X1

X2 = |k3|

X3 = |k4|+ |k5|

|k1 + k2| = Y12 Y23 = |k4 + k5|

G =

Feynman diagrams are not efficient and do not expose the hidden

simplicity of WFCs!
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Graph tubings to the rescue

Efficient formula from graph tubings that enhances our mathematical

understanding of WFCs [N. Arkani-Hamed, P. Benincasa, A. Postnikov ’17]

ψG =
∑

Tmax,comp

∏
τ∈T

1

Sτ

A tube, τ , is a set of two sets τ = { Vτ , Eτ }
set of vertices of G enclosed by τ

1
2

3

set of edges of G crossed by τ

1
2

3

Tube variables: Sτ =
∑
v∈Vτ

Xv +
∑
e∈Eτ

Ye

Maximal compatible tubing T = {τ1, . . . , τ2n+`−1}
• Compatible: τi ∩ τj = ∅ ∀ τi, τj ∈ T

• Maximal: |T| = 2n+ `− 1
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Example: 3-site chain graph

G = 1
2

3
(3-chain graph)

⇓

τ1 τ3 τ2

τ123

τ12 τ23

,

{ }

Tmax,comp ∈

⇓

ψ3-chain =
1

S1S2S3S123

(
1

S12
+

1

S23

)

Label tubes τ and corresponding Sτ by vertices they encircle
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Cosmological hyperplane arrangements are degenerate

Realization of Sτ in terms of Xv and Ye not important for this talk

Important: tube varibles Sτ are constrained; tubes tell us how

Sτi + Sτj = Sτi∪τj +
∑

τ∈τi∩τj

Sτ (?)

3-chain example:

τ12 τ23 = τ123
τ2

=⇒ S12 + S23 = S123 + S2

Multiple representations for the vanishing loci of ψ3-chain

ψ3-chain =
1

S1S2S3S123

S12 + S23

S12S23
=

1

S1S2S3S123

S123 + S2

S12S23
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The zeros and near zero splitting of amplitudes

Recent advances in our understanding of the zeros of amplitudes and how

they split or factor near these zeros
[S. Telen ’25; B. Giménez Umbert, B. Sturmfels, ’25; N. Arkani-Hamed, Q. Cao, J. Dong,

C. Figueiredo, S. He, ’24; F. Cachazo, N. Early, B. Giménez Umbert ’22; · · · L.J. Dixon,

Z. Kunszt, A. Signer ’99; A. D’Adda, S. Sciuto, R. D’Auria, F. Gliozzi ’71; L. Adler ’65 · · · ]

While factorization near poles well follows from unitarity, the physical

origin of splitting near zeroes remains mysterious

Ultimately want to understand the zeros of ψG and its splittings

This talk: satisfied by understanding the zeros of stripped WFCs

ψ̃G—simpler piece of ψG
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Outline

1) Stripped WFCs and graph associahedra

1a) Combinatorics of stripped tubes organize into graph associahedra

1b) Construct hyperplane realization of the graph associahedra and

relate their canonical functions to stripped WFCs

2) Zeros of the stripped WFCs

2a) Parametric/flattening zeros

2b) The adjoint polynomial and wavefunction zeros

2c) Factorization zeros

3) Connection to the zeros of Tr[φ3] amplitudes

4) Conclusion
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Stripped WFCs and the graph

associahedron



Stripped WFCs

Recall ∃ set of tubes compatible with all other tubes:

Ttriv,comp = {τ1, τ2, . . . , τn, τtotal}

Stripped WFC:

ψ̃G =

 ∏
τ∈Ttriv,comp

Sτ

ψG =
∑

T̃max,comp

∏
τ∈T̃

1

Sτ

T̃ ∩ Ttriv,comp = ∅

|T̃max,comp| = n+ `− 2

3-chain example:
τ12 τ23

,

{ }

˜Tmax,comp ∈

=⇒ ψ̃3-chain =
1

S12
+

1

S23
=
S12 + S23

S12S23
=
S123 + S2

S12S23
(?)
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Graph associahedra (AG) and compatibility of tubings

Stripped maximal compatible tubings correspond to vertices of graph

associahedra AG [N. Arkani-Hamed, C. Figueiredo, Francisco Vazão ’24]

Faces correspond to tubes, codimension-k facets encode compatibility of

stripped (k − 1)-Tubings

A3−chain

A4−chain
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Graph associahedra from compatibility of tubings

A4−star A3−gon

ψ̃G should be the cannonical function of AG

=⇒ want hyperplane realization to make this explicit
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A graph associahedron for stripped WFCs

Modify the Carr-Devadoss algorithm so that 2-tube S’s are our

coordinates instead of 1-tube S’s

[M. Carr and S. L. Devadoss ’05; S. L. Devadoss ’06]

Coordinates: {Sτ} where τ is a 2-tube are coordinates of Rm=n+`−1

Parameters: {Stotal} ∪ {Sv}v an internal site control specific geometry of AG
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A graph associahedron for stripped WFCs: step 1

(m−1)-simplex by intersecting Rm+ = {Sτ ≥ 0 : τ ∈ T2} with hyperplane∑
τ a 2-tube

Sτ = Stotal +
∑

interior sites v

# Sv

(obtain by reducing Stotal to 1- and 2-tube S’s using (?))

Example (5-star graph):

1

2

3
4

5

Coordinates: (S13, S23, S34, S45) ∈ R4
+

Parameters: (S12345, S3, S4) ∈ R3
+

S13 ≥ 0, S23 ≥ 0, S34 ≥ 0, S45 ≥ 0,

S13 + S23 + S34 + S45 = S12345 + 2S3 + S4
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A graph associahedron for stripped WFCs: step 2

Each (m−k − 1)-dimensional facet of the simplex is truncated by the

hyperplanes Sτ a k-tube = 0

Sτ a k-tube =
∑

τ ′: 2-tubes
in k-tube τ

Sτ ′ −
∑

interior sites v

# Sv + δτ ≥ 0

Ensure that polytope is simplicial with correct combinatorial

interpretation:

Stotal ≥ Sv ≥ δτ∈T3 ≥ 0

δτ1 + δτ2 ≥ δτ1∪τ2 + δτ1∩τ2 when τ1 ∩ τ2 6= ∅

Example (5-star graph):
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Tube compatibility

Linear constraints (?) not satisfied if δτ 6= 0!
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The cosmological limit: δτ → 0

=⇒ ψ̃G = lim
δτ→0

Ω̂[AG ]

(automatic in the Xv and Ye parameterization of the Sτ )
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3-dimensional examples

lim
δτ→0

AG is degenerate when n+ ` > 4
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3-dimensional examples
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Parametric/flattening zeros



Parametric/flattening zeros

From now on: δτ = 0

Zeros of Tr[φ3] controlled by flattening of the ABHY associahedron

[N. Arkani-Hamed, Q. Cao, J. Dong, C. Figueiredo, S. He ’24; N. Arkani-Hamed, Y. Bai, S. He, G.

Yan ’17 ]

1
2 3

4 :

S2 + S1234

S3 + S1234

S3

S2

S12

S34

S23

S12

S34

S123

S234

S34

S12

S123

S23

S234

S2 = S1234 = 0 S12

S3 = S1234 = 0

S2 = S3 = 0

S12 S23

S34

S34
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Parametric/flattening zeros

1

2

43 :

S1234 = 0

S
∗

123

S
∗

13

S
∗

134

S
∗

34

S
∗

234

S
∗

23

S
∗

23

S
∗

13

S∗

123

S∗

134

S∗

234

S∗

13

S∗

34

S∗

23

S
∗

3

S
∗

3

S
∗

3
+ S1234

S
∗

3
+ S1234

S
∗

3
= 0

1

23
:

S23

S2

S2

S1 + S2 + S1231

S2 + S3 + S1231

S3

S1

S12

S12

S23

S123

S31

S312

S231

S1 = S2 = S1231 = 0

S2 = S3 = S1231 = 0

S3 = S1 = S1231 = 0

S12

S23

S31
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3-dimensional examples

:

:

:

:
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Parametric zero summary

1

choose one

n

2 n−1
: ψ̃n-chain|S12···n=Sv=0 = 0

1

2

3

choose one

n

4 n−1

2-dim drop

: ψ̃n-star|S12···n=Sv=0 = 0

choose
two : ψ̃n-gon|S12···n=Sv1=Sv2=0 = 0
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Splitting near parametric zeros: Relaxing Stot = 0

1 n

2 n−1i

∝ 1

2 i

n

n−1i

×S12···n ×

ψ̃n−chain|Si=0

2

4

1

3
i n−1

n ∝ n

n−1i

×S12···n ×

2

4

1

3
i

2

4

1

3
i n−1

n ∝ n

n−1

S12···n ×
4

1

3

i

ψ̃n−star|Si=0

ψ̃n−star|S∗

3
=0

2

3

× ×

i

i+1i−1

∝ i i

i−1i+1

ψ̃n−gon|Si=0 24



The adjoint polynomial and

wavefunction zeros



The adjoint polynomial

Adjoint polynomial: polynomial in the numerator of a canonical function

after putting everything over a common denominator

ψ̃4−chain =
adj

S12S23S34S123S234

adj = S12 (S123 (S23 + S34) + S234S34) + S23S234 (S123 + S34)

The zero locus of the adjoint polynomial passes through the points

corresponding to the maximal intersection of non-compatible Sτ

Can we use the adjoint polynomial to find linear conditions on the

parameters (S1234, S2, S3) ∈ R3
+ and at least one of the coordinates

(S12, S23, S34) ∈ R3
+?
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The 4-chain hyperplane arrangement

A4-chain

S3

S2

S1234
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Degenerating the 4-chain arrangement

S3 = S23 + S34 − S234 = 0

adj|S3=0 = S234S1234(S1234 + S2 − S34)

A4-chain

S2

S1234
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Degenerating the 4-chain arrangement

Shrinking bottom triangle:

S3 = S23 + S34 − S234 = 0

adj|S3=0 = S234S1234(S1234 + S2 − S34)

Shrinking upper triangle:

S2 = S12 + S23 − S123 = 0

adj|S2=0 = S123S1234(S1234 + S3 − S12)

Shrinking middle triangle: rediscover only parametric zeros
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The 4-chain wavefuction zero

V ((S1234 + S2 − S34)(S1234 + S3 − S12))

A4-chain

S2

S3

S1234

Zero for both ψ̃G and ψG!
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The wavefuction zero is only for n-chains
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The wavefuction zero and splitting for n-chains

The wavefunction zero (only exists for chains):

ψ̃n−chain|S1=S2=···=Sn−2=0 = 0

S1 := S12···n−1 + S23···n

Si=2,...,n−2 := S12···n−1 − S1···i + Si+1···n

Zero for both ψ̃ and ψ!

Splitting:

relax Si=2,3,...,n−2 = 0 : ∝ Si × ψ̃i-chain × ψ̃(n−i)-chain

relax S1 = 0 : ∝ S1 × ψ̃1-chain︸ ︷︷ ︸
1

× ψ̃(n−1)-chain
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Factorization zeros



Factorization zeros: 4-chain again

Combine the splitting near Si = 0 with the wavefunction zero

∝

ψ̃3−chain =
S12+S23
S12S23

×

∝

ψ̃3−chain =
S23+S34
S23S34

×

Shrinking bottom triangle:

S3 = S23 + S34 − S234 = 0

adj|S3=0 = S234S1234(S1234 + S2 − S34)

On the loci S3 = 0, after using (?)

S1234+S2−S34|S3=0 = S12 + S23
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Factorization zeros: Arbitrary graphs

Set enough internal site tube varibles Sv = 0 to factor the graph into a

product of chain graphs

Choose a chain graph factor and localize to its wavefunction zero to

produce a factorization zero
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Connection to Tr[φ3] amplitudes



Connection to Tr[φ3] amplitudes

From WFCs to amplitudes:

• Si...j−1 7→ Xi,j for |i− j| ≥ 2 (coordinates 7→ planar variables)

• Si 7→ −pi−1 · pi+1 for 2 ≤ i ≤ n− 1

(parameters 7→ non-planar variables)

• S12···n 7→ −p1 · pn (parameters 7→ non-planar variables)

• (n−1)(n−4)/2 non-planar variables vanish on support of (?)

where Xi,j = (pi + · · ·+ pj−1)2 and Xi,i+1 = 0

Under this identification, ψ̃n-chain ↔ A
Tr(φ3)
n+1

ψ̃4-chain =
1

S12S123
+

1

S23S234
+

1

S12S34
+

1

S123S23
+

1

S234S34

A
Tr(φ3)
5 =

1

X1,3X1,4
+

1

X2,4X2,5
+

1

X1,3X3,5
+

1

X1,4X2,4
+

1

X2,5X3,5

Zeros of ψ̃n-chain are zeros of A
Tr(φ3)
n+1 and vice versa
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Discussion and future directions



Recap

Constructed an explicit hyperplane realization of the graph associahedron

corresponding to the stripped WFC

For n+ ` > 4, polytope is degenerate/non-simplicial in the cosmological

limit (δτ → 0)

Classified the linear zero conditions for the flat-space (stripped) WFCs

associated to a single Feynman graph G into parametric, wavefunction

and factorization zeros

For each zero type, we derived how the stripped WFC splits or factors

The wavefunction zeros only exist for the family of n-chain graphs;

parametric and factorization zeros are universal

Interesting connection between ψ̃n-chain and A
Tr(φ3)
n+1 amplitudes (not

covered – see paper)
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Discussion and future directions

What are the zeros of cosmological WFCs of a Tr(φ3) model? Are they

all produced by flattening the cosmohedron?

Can we construct stringy integrals for WFCs? Cosmological δ-shifts?

What is the physics interpretation of the wavefunction zero? Seem to be

multi-soft limits:

Xi = |~ki| = 0 for all 3 ≤ i ≤ n− 2

Y12 = −X1 − 2X2 , Yn−1,n = −2Xn−1 −Xn

Why should we expect this behaviour from the physics perspective?

Can WFCs be uniquely fixed from its zeros?
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